Skip to main content

Advertisement

Log in

Geographical Analysis of Agro-Environmental Measures for Reduction of Chemical Inputs in Tuscany

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The agro-environmental policies included in rural development plans are getting increasing importance in European Community strategies. These policies represent the meeting point between demand and supply of positive externalities. The difficulty of assessing real environmental efficiency is one of the elements characterizing agro-environmental measures. This difficulty is related to the identification of suitable parameters for evaluating farms according to their impact on the territory. This impact is mainly related both to chemical inputs and to the territorial characteristics of the farm. Different types of fertilizers, pesticides and herbicides are currently used in production processes; however, the analysis has focused only on nitrates, as they represent the most critical types of chemicals related to soil pollution. A case study is provided by analysis of agro-environmental measures in Tuscany for the reduction of nitrates in organic and integrated farms. Using spatial multicriteria analysis, integrated and organic farms were classified according to their geographical locations and their release of nitrates into the soil. This classification permits the highlighting of farms that make the greatest economic efforts to reduce pollution and therefore it could determine environmental benefits. Considering that the trend of policy strategies is toward a reduction of monetary resources, the classification could help decision makers choose the right allocation of future resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. Number based on the activated agro-environmental contracts.

References

  • Al-Ahmadi, K., See, L., Heppenstall, A., & Hogg, J. (2009). Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia. Ecological Complexity, 6, 80–101.

    Article  Google Scholar 

  • ARPAT. (2013). Mappa del monitoraggio delle acque delle zone vulnerabili ai nitrati. http://www.arpat.toscana.it/datiemappe/mappe/mappa-del-monitoraggio-delle-acque-delle-zone-vulnerabili-ai-nitrati. Accessed July 4, 2018.

  • ARTEA. (2018a). ARTEA, statistiche e uso GIS. http://www.artea.toscana.it/sezioni/servizi/misure.asp?varTipo=32. Accessed July 4, 2018.

  • ARTEA. (2018b). ARTEA, relazione certificazione. https://www.artea.toscana.it/sezioni/artea/misure.asp?ac=false&varTipo=7&liv=3. Accessed July 4, 2018.

  • Asciuto, G., Agnese, C., & Giordano, G. (1988). La valutazione del servizio idrologico del bosco in un bacino: aspetti metodologici e applicativi, in Atti del XVII Incontro di Studio CeSET Il bosco e l’ambiente: aspetti economici, giuridici ed estimativi. Firenze.

  • Baerenklau, K. A., González-Cabán, A., Paez, C., & Chavez, E. (2010). Spatial allocation of forest recreation value. Journal of Forest Economics, 16, 113–126.

    Article  Google Scholar 

  • Bahlai, C. A., Xue, Y., McCreary, C. M., Schaafsma, A. W., & Hallett, R. H. (2011). Choosing organic pesticides over synthetic pesticides may not effectively mitigate environmental risk in soybeans. PLoS ONE, 5(6), e11250.

    Article  Google Scholar 

  • Barazzuoli, P., Izzo, S., & Menicori, P. (1989). A new practical aid to regional hydrogeologic planning: The runoff coefficient map. Environmental Management, 13(5), 613–622.

    Article  Google Scholar 

  • Bartolini, F., Angelini, L. G., Brunori, G., & Gava, O. (2015). Impacts of the CAP 2014–2020 on the agroenergy sector in Tuscany, Italy. Energies, 8, 1058–1079.

    Article  Google Scholar 

  • Baumann, H., Peck, M. A., Götze, H.-E., & Temming, A. (2007). Starving early juvenile sprat, Sprattus sprattus L., in Western Baltic coastal waters: Evidence from combined field and laboratory observations in August/September 2003. Journal of Fish Biology, 70, 853–866.

    Article  Google Scholar 

  • Bernetti, I., Marinelli, A., & Riccioli F. (2011). L’allocazione spaziale del beneficio turistico-ricreativo del bosco. Aestimum n.59, Firenze University Press (pp. 87–104). ISSN 1592-6117.

  • Borin, M., Vianello, M., Morari, F., & Zanin, G. (2005). Effectiveness of buffer strips in removing pollutants in runoff from a cultivated field in North-East Italy. Agricolture Ecosystems and Environment, 105, 101–114.

    Article  Google Scholar 

  • Bottalico, F., Pesola, L., Vizzarri, M., Antonello, L., Barbati, A., Chirici, A., et al. (2016). Modeling the influence of alternative forest management scenarios on wood production and carbon storage: A case study in the Mediterranean region. Environmental Research, 144(Part B), 72–87.

    Article  Google Scholar 

  • Carver, S., Tricker, J., & Landres, P. (2013). Keeping it wild: Mapping wilderness character in the United States. Journal of Environmental Management, 131, 239–255.

    Article  Google Scholar 

  • Chaudhary, P., Chhetri, S. K., Man Joshi, K., Man Shrestha, B., & Kayastha, P. (2016). Application of an analytic hierarchy process (AHP) in the GIS interface for suitable fire site selection: A case study from Kathmandu Metropolitan City, Nepal. Socio-Economic Planning Sciences, 53, 60–71.

    Article  Google Scholar 

  • Chen, S. J., & Hwang, C. (1992). Fuzzy multiple attribute decision making. Berlin: Springer.

    Book  Google Scholar 

  • Chen, Y., Yu, J., & Khan, S. (2010). Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling and Software, 25, 1582–1591.

    Article  Google Scholar 

  • Comber, A., Carver, S., Fritz, S., McMorran, R., Washtell, J., & Fischer, P. (2010). Different methods, different wilds: Evaluating alternative mappings of wildness using fuzzy MCE and Dempster–Shafer MCE. Computers, Environment and Urban Systems, 34, 142–152.

    Article  Google Scholar 

  • Corrado, G. (1988). Gli aspetti economici della tutela della foresta, con particolare riferimento all’azione di regimazione idrogeologica, in Atti del XVII Incontro di Studio CeSET Il bosco e l’ambiente: aspetti economici, giuridici ed estimativi. Firenze.

  • Cozzi, M., Di Napoli, F., Viccaro, M., Fagarazzi, C., & Romano, S. (2014). Ordered weight averaging multicriteria procedure and cost-effectiveness analysis for short rotation forestry siting in the Basilicata Region, Italy. International Journal of Global Energy, 37(5/6), 282–302.

    Article  Google Scholar 

  • Cozzi, M., Viccaro, M., Di Napoli, F., Fagarazzi, C., Tirinnanzi, A., & Romano, S. (2015). A spatial analysis model to assess the feasibility of short rotation forestry fertigated with urban wastewater: Basilicata region case study. Agricultural Water Management, 159, 185–196.

    Article  Google Scholar 

  • Davies, B., Biggs, J., Williams, P., & Thompson, S. (2009). Making agricultural landscapes more sustainable for freshwater biodiversity: A case study from southern England. Aquatic Conservation-Marine and Freshwater Ecosystems, 19, 439–447.

    Article  Google Scholar 

  • Davis, B. (2001). GIS: A visual approach (2nd ed.). Boston: Cengage Learning. ISBN 13: 978-0766827646.

  • De Araújo, C. C., & Macedo, A. B. (2002). Multicriteria geologic data analysis for mineral favorability mapping: Application to a metal sulphide mineralized area, Ribeira Valley Metallogenic Province, Brazil. Natural Resources Research, 11(1), 29–43.

    Article  Google Scholar 

  • De Blasi, G., & Fucilli, V. (2007). La valutazione intermedia dei PSR in Italia: Modelli a confronto. XXXVI Incontro di Studio Ce.S.E.T., Firenze University Press (pp. 275–290). ISSN 1826-249X (online).

  • De Maya, S. R., Lopez-Lopez, I., & Munuera, J. L. (2011). Organic food consumption in Europe: International segmentation based on value system differences. Ecological Economics, 70(10), 1767–1775.

    Article  Google Scholar 

  • Dechorgnat, J., Nguyen, C. T., Armengaud, P., Jossier, M., Diatloff, E., Filleur, S., et al. (2011). From the soil to the seeds: the long journey of nitrate in plants. Journal of Experimental Botany, 62(4), 1349–1359.

    Article  Google Scholar 

  • Eastman, J. R. (2009). IDRISI Taiga manual. MA, USA, Clark Labs: Clark University.

    Google Scholar 

  • European Commission. (2017). CAP context indicators. http://ec.europa.eu/agriculture/cap-indicators/context/index_en.htm. Accessed July 4, 2018.

  • Eurostat. (2018). Agri-environmental indicator - nitrate pollution of water. http://ec.europa.eu/eurostat/statistics-explained/pdfscache/16825.pdf. Accessed July 4, 2018.

  • Farina, D., & Gaspari, A. (1990). Application of the Kennessey method for the determination of the runoff coefficient and evaluation of aquifer recharge in mountain regions. Hydrology in mountainous regions, i - hydrological measurements; the water cycle. In Proceedings of two Lausanne Symposia, August 1990. IAHS Publ. no. 193, 1990.

  • Gao, J., & Li, S. (2011). Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression. Applied Geography, 31, 292–302.

    Article  Google Scholar 

  • Gdoura, K., Anane, M., & Jellali, S. (2015). Geospatial and AHP-multicriteria analyses to locate and rank suitable sites for groundwater recharge with reclaimed water. Resources, Conservation and Recycling, 104, 19–30.

    Article  Google Scholar 

  • Gleick, P. H. (2003). Global freshwater resources: Soft-path solutions for the 21st century. Science, 302, 1524–1528.

    Article  Google Scholar 

  • Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011). Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Critical Reviews in Plant Sciences, 30(1), 95–124.

    Article  Google Scholar 

  • Gonzalez, A., Ortigoza, E., Llamosas, C., Blanco, G., & Amarilla, R. (2018). Multi-criteria analysis of economic complexity transition in emerging economies: The case of Paraguay. Socio-Economic Planning Sciences. https://doi.org/10.1016/j.seps.2018.02.004.

    Google Scholar 

  • Goss, M. J., Howse, K. R., Colbourne, P., & Harris, G. L. (1985). Cultivations systems and the leaching of nitrates. In J. F. de LaSolbe (Ed.), Effects of land use on freshwaters. Agriculture, forestry and mineral exploitation (pp. 528–532). Great Britain: Water Resource Center.

    Google Scholar 

  • Grillone, G., Baiamonte, G., & D’Asaro, F. (2014). Empirical determination of the average annual runoff coefficient in the Mediterranean area. American Journal of Applied Sciences, 11(1), 89–95.

    Article  Google Scholar 

  • Guo, Z., Xiao, X., Gan, Y., & Zheng, Y. (2001). Ecosystem functions, services and their values, a case study in Xingshan County of China. Ecological Economics, 38, 141–154.

    Article  Google Scholar 

  • Heathwaite, A. L., Griffiths, P., & Parkinson, R. J. (1998). Nitrogen and phosphorus in runoff from grassland with buffer strips following application of fertilizers and manures. Soil Use Manage, 14, 142–148.

    Article  Google Scholar 

  • Huang, J., Huang, Y., Pontius, Gilmore, Jr, R., & Zhang, Z. (2015). Geographically weighted regression to measure spatial variations in correlations between water pollution versus land use in a coastal watershed. Ocean and Coastal Management, 103, 14–24.

    Article  Google Scholar 

  • Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of the Total Environment, 409, 3578–3594.

    Article  Google Scholar 

  • ISTAT. (2010). VI ISTAT Agricultural census database. http://dati-censimentoagricoltura.istat.it/Index.aspx. Accessed July 4, 2018.

  • ISTAT. (2011). XV ISTAT population census database. http://dati-censimentopopolazione.istat.it/Index.aspx. Accessed July 4, 2018.

  • Jaraitė, J., & Kažukauskas A. (2011). The effect of mandatory agro-environmental policy on farm environmental performance. CERE (Centre for Environmental and Resource Economics) Working Paper, 2011:13.

  • Johnsson, H., Bergstrom, L., Jansson, P. E., & Paustian, K. (1987). Simulated nitrogen dynamics and losses in a layered agricultural soil. Agricultural Ecosystem Environment, 18, 333–356.

    Article  Google Scholar 

  • Kayastha, P., Dhital, M. R., & De Smedt, F. (2013). Application of the analytical hierarchy process (AHP) for landslide, susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences, 52, 398–408.

    Article  Google Scholar 

  • Kennessey, B. (1930). Lefolyasi téniezok és retenciok. Koziemènyek: Viguzy.

    Google Scholar 

  • Krutz, L. J., Senseman, S. A., Zablotowicz, R. M., & Matocha, M. A. (2005). Reducing herbicide runoff from agricultural fields with vegetative filter strips: A review. Weed Science, 53, 353–367.

    Article  Google Scholar 

  • Lazarsfeld, P. F. (1969). Evidence and influence in social research. In R. Boudon & P. F. Lazarsfeld (Eds.), L’analisi Empirica Nelle Scienze Sociali, vol. 1. Dai concetti agli indici empirici, il Mulino, Bologna.

  • Long, N. T., & De Smedt, F. (2012). Application of an analytical hierarchical process approach for landslide susceptibility mapping in A Luoi district, Thua Thien Hue Province, Vietnam. Environmental Earth Sciences, 66(7), 1739–1752.

    Article  Google Scholar 

  • Malczewski, J. (1999). GIS and multicriteria decision analysis. Hoboken: Wiley.

    Google Scholar 

  • Malczewski, J. (2000). On the use of weighted linear combination method in GIS: Common and best practice approaches. Transactions in GIS, 4(1), 5–22.

    Article  Google Scholar 

  • Malczewski, J. (2004). GIS-based land-use suitability analysis: A critical overview. Progress in Planning, 62(1), 3–65.

    Article  Google Scholar 

  • Malczewski, J. (2006a). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726.

    Article  Google Scholar 

  • Malczewski, J. (2006b). Multicriteria decision analysis for collaborative GIS. In S. Balram & S. Dragićević (Eds.), Collaborative geographic information systems (pp. 167–185). Hershey: Idea Group Publishing.

    Chapter  Google Scholar 

  • Marconi, V., Raggi, M., & Viaggi, D. (2015). Assessing the impact of RDP agri-environment measures on the use of nitrogen-based mineral fertilizers through spatial econometrics: The case study of Emilia-Romagna (Italy). Ecological Indicators. https://doi.org/10.1016/j.ecolind.2015.02.037.

    Google Scholar 

  • Merlo, M., & Croitoru, L. (Eds.). (2005). Valuing mediterranean forests: Towards total economic value. Wallingford- Cambridge: CABI International.

    Google Scholar 

  • MiPAAF (2013). Monitoraggio e Valutazione - Rapporti di Valutazione Intermedia 2007–2013. https://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/5090. Accessed July 4, 2018.

  • Molina, J. A. E., & Smith, P. (1998). Modeling carbon and nitrogen processes in soil. Advances in Agronomy, 62, 253–298.

    Article  Google Scholar 

  • Morari, F., Lugato, E., Polese, R., Berti, A., & Giardini, L. (2012). Nitrates concentrations in groundwater under contrasting agricultural management practices in the low plains of Italy. Agriculture, Ecosystems & Environment, 147, 47–56.

    Article  Google Scholar 

  • Nelson, J., & Kennedy, P. (2009). The use (and abuse) of meta-analysis in environmental and natural resource economics: An assessment. Environmental & Resource Economics, 42(3), 345–377.

    Article  Google Scholar 

  • Nicholas, P., Jeffreys, I., & Lampkin, N. (2006). Effects of European organic farming policies at sectoral level and societal levels. Aspects of Applied Biology, 79, 163–166.

    Google Scholar 

  • Nilsson, P. (2014). Natural amenities in urban space—A geographically weighted regression approach. Landscape and Urban Planning, 121, 45–54.

    Article  Google Scholar 

  • Ormerod, S. J., Dobson, M., Hildrew, A. G., & Townsend, C. R. (2010). Multiple stressors in freshwater ecosystems. Freshwater Biology, 55, 1–4.

    Article  Google Scholar 

  • Orsi, F., Geneletti, D., & Borsdorf, A. (2013). Mapping wildness for protected area management: A methodological approach and application to the Dolomites UNESCO World Heritage Site (Italy). Landscape Urban Planning, 120, 1–15.

    Article  Google Scholar 

  • Padel, S., Lampkin, N., & Foster, C. (1999). Influence of policy support on the development of organic farming in the European Union. International Planning Studies, 4(3), 303–316.

    Article  Google Scholar 

  • Petrini, M. A., Vieira Rocha, J., Brown, C., & Bispo, R. C. (2016). Using an analytic hierarchy process approach to prioritize public policies addressing family farming in Brazil. Land Use Policy, 51, 85–94.

    Article  Google Scholar 

  • Poole, A. E., Bradley, D., Salazar, R., & Macdonald, D. W. (2013). Optimizing agri-environment schemes to improve river health and conservation value. Agriculture, Ecosystems & Environment, 181, 157–168.

    Article  Google Scholar 

  • Primdahl, J., Peco, B., Schramek, J., Andersen, E., & Onate, J. J. (2003). Environmental effects of agri-environmental schemes in Western Europe. Journal of Environmental Management, 67, 129–138.

    Article  Google Scholar 

  • Regione Toscana. (2013). Vademecum Programma di Sviluppo Rurale (PSR) 2007-2013 della Regione Toscana. http://www.regione.toscana.it/documents/10180/70126/testo%20vademecum-2/8ef0d954-b160-4d78-8d6e-50c27f0e2f55. Accessed July 4, 2018.

  • Regione Toscana. (2015). Regione Toscana- fiumi, torrenti, corsi d’acqua. http://www.datiopen.it/it/opendata/Regione_Toscana_Fiumi_torrenti_corsi_d_acqua. Accessed July 4, 2018.

  • Regione Toscana. (2018). P.A.N. Piano di Azione Nazionale per l’uso sostenibile dei prodotti fitosanitari. Manuali di riferimento. http://www.regione.toscana.it/pan/manuali-di-riferimento. Accessed July 4, 2018.

  • Riccioli, F., Fratini, R., Boncinelli, F., El Asmar, T., El Asmar, J. P., & Casini, L. (2016). Spatial analysis of selected biodiversity features in protected areas: A case study in Tuscany region. Land Use Policy, 57, 540–554.

    Article  Google Scholar 

  • Roggero, P. P., & Toderi, M. (2002). Le misure agro-ambientali: Applicazione nelle Marche e analisi di un caso di studio sull’inquinamento da nitrati di origine agricola. In Quaderni 5B, Assam, Ancona (p. 339).

  • Romano, S., Cozzi, M., Viccaro, M., & Di Napoli, F. (2013). The green economy for sustainable development: a spatial multi-criteria analysis—Ordered weighted averaging approach in the siting process for short rotation forestry in the Basilicata Region, Italy. Italian Journal of Agronomy, 8(3), 158–167.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. Planning, priority setting, resource allocation. New York City, USA: Mc Graw-Hill.

    Google Scholar 

  • See, L., Schepaschenko, D., Lesiv, M., McCallum, I., Fritz, S., Comber, A., et al. (2015). Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 48–56.

    Article  Google Scholar 

  • Simsek, C., Kincal, C., & Gunduz, O. (2006). A solid waste disposal site selection procedure based on groundwater vulnerability mapping. Environmental Geology, 49(4), 620–663.

    Article  Google Scholar 

  • Strahm, B. D., & Harrison, R. B. (2006). Nitrate sorption in a variable-charge forest soil of the Pacific Northwest. Soil Science, 171, 313–321.

    Article  Google Scholar 

  • Su, S., Xiao, R., & Zhang, Y. (2012). Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression. Applied Geography, 32, 360–375.

    Article  Google Scholar 

  • Sweeney, B. W. (1993). Effects Of streamside vegetation on macroinvertebrate communities of white clay creek in Eastern North- America. Proceedings of the Academy of Natural Sciences of Philadelphia, 144, 291–340.

    Google Scholar 

  • Valle Junior, R. F., Varandas, S. G. P., Sancehs Fernandes, L. F., & Pacheco, F. A. L. (2015). Multi criteria analysis for the monitoring of aquifer vulnerability: A scientific tool in environmental policy. Environmental Science & Policy, 48, 250–264.

    Article  Google Scholar 

  • Zadeh, L. (1965). Fuzzy sets. Information Control, 8, 338–353.

    Article  Google Scholar 

  • Zandersen, M., & Tol, R. S. J. (2009). A meta-analysis of forest recreation values in Europe. Journal of Forest Economics, 15(1–2), 109–130.

    Article  Google Scholar 

  • Ziolkowska, J. (2010). Impact of environmental objectives on optimal budget allocations for agro-environmental measures—A case study for Poland. Agricultural Economics Research Review, 23, 233–244.

    Google Scholar 

Download references

Acknowledgments

We are thankful to the anonymous reviewers and the Editors John Carranza and Mauro Viccaro for their relevant comments and constructive suggestions that helped us improve the overall quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Riccioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riccioli, F., Gabbrielli, E., Casini, L. et al. Geographical Analysis of Agro-Environmental Measures for Reduction of Chemical Inputs in Tuscany. Nat Resour Res 28 (Suppl 1), 93–110 (2019). https://doi.org/10.1007/s11053-018-9398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9398-z

Keywords

Navigation