Skip to main content

Advertisement

Log in

Evaluating Hydrological Responses to Urbanization in a Tropical River Basin: A Water Resources Management Perspective

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The present study investigates the hydrological response of increase in urbanization on water stressed Upper Bhima River basin which lies in a semi-arid climatic zone of Maharashtra state, India. Land Use Land Cover (LULC) changes due to urbanization, industrialization and anthropogenic activities have reconfigured the waterscape of the river basin, which has affected its regional hydrology. Influence of urbanization on key hydrological components is studied using Soil and Water Assessment Tool model. Firstly, Object Based Image Analysis approach was used to prepare time series LULC maps of the years 1992, 2002, 2009 and 2014. Overall classification accuracy of 92.48% and Kappa Coefficient (K) of 0.87 were achieved. Urbanization indicators, e.g. population urbanization level (Up) and spatial urbanization level (Us), were used to quantify the growth patterns in population and urban areas respectively. Mann–Kendall trend test was performed on the average annual rainfall data (year 1985–2014) to study rainfall trends across the region. Further, combination of statistical analyses including correlation analysis and multivariate analysis of variance were performed to comprehend the causative connection and interrelationships between Us and hydrological parameters. The results reveal that during 1992–2014, with increase in Us of 0.05, the average annual surface runoff increased to 10.4 mm [standard deviation (σ) = 4.40; sum of squares (SS) = 58.20], whereas percolation decreased to 14.5 mm [σ = 6.06; SS = 110.10], and base flow decreased to 11.7 mm (σ = 4.90; SS = 72.00). These hydrological parameters are highly influenced by increase in urbanization. This study is relevant for various stakeholders such as water sources planners and policy makers for assessment of water resources to ensure sustainable development in the urbanizing tropical river basins. Remedial measures are suggested to minimize the adverse effect of urbanization on hydrological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adepoju, M. O., Millington, A. C. & Tansey, K. T. (2006). Land use/land cover change detection in metropolitan Lagos (Nigeria): 1984–2002. In ASPRS 2006, Annual Conference Reno, Nevada May (pp. 1–5). www.asprs.org/a/publications/proceedings/reno2006/0002.pdf. Accessed on July 09, 2015.

  • Aher, P. D., Adinarayana, J., & Gorantiwar, S. D. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydrology, 511, 850–860.

    Article  Google Scholar 

  • Akpoti, K., Antwi, E. O., & Kabo-bah, A. T. (2016). Impacts of rainfall variability, land use and land cover change on stream flow of the black Volta Basin, West Africa. Hydrology, 3(3), 26. https://doi.org/10.3390/hydrology3030026.

    Article  Google Scholar 

  • Allaire, M. C., Vogel, R. M., & Kroll, C. N. (2015). The hydromorphology of an urbanizing watershed using multivariate elasticity. Advances in Water Resources, 86, 147–154. https://doi.org/10.1016/j.advwatres.2015.09.022.

    Article  Google Scholar 

  • Arisz, H. & Burrell, B. C. (2006). Urban drainage infrastructure planning and design considering climate change. In EIC Climate Change Technology, IEEE (pp. 1–9). https://doi.org/10.1109/eicccc.2006.277251.

  • Attua, E. M., Ayamga, J., & Pabi, O. (2014). Relating land use and land cover to surface water quality in the Densu River basin, Ghana. International Journal of River Basin Management, 12(1), 57–68.

    Article  Google Scholar 

  • Berezowski, T., Szcześniak, M., Kardel, I., Michałowski, R., Okruszko, T., Mezghani, A., et al. (2016). CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest polish river basins. Earth System Science Data, 8(1), 127–139.

    Article  Google Scholar 

  • Bhatt, A., Ghosh, S. K., & Kumar, A. (2016). Spectral indices based object oriented classification for change detection using satellite data. International Journal of System Assurance Engineering and Management. https://doi.org/10.1007/s13198-016-0458-7.

    Article  Google Scholar 

  • Bhattacharya, J. (2007). Multivariate analysis of variance (MANOVA). Tutorial for Goldsmiths College, United Kingdom. http://homepages.gold.ac.uk/. Accessed on August 05, 2017.

  • Bochis, E. C. (2010). Characteristics of urban development and associated stormwater quality. The University of Alabama. http://unix.eng.ua.edu/. Accessed on May 11, 2016.

  • Bostan, P. A., Heuvelink, G. B. M., & Akyurek, S. Z. (2012). Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. International Journal of Applied Earth Observation and Geoinformation, 19, 115–126.

    Article  Google Scholar 

  • Brice, M. H. (2016). Impacts de l’urbanisation sur la diversité spécifique et fonctionnelle dans les forêts riveraines. M.Sc. Dissertation, Université de Montréal. http://www.biopolis.ca/. Accessed on January 19, 2017.

  • Campbell, J. B. (2007). Introduction to remote sensing (4th ed.). New York: The Guilford Press.

    Google Scholar 

  • Carey, G. (1998). Multivariate analysis of variance (MANOVA): I. theory. http://ibgwww.colorado.edu/. Accessed on February 10, 2016.

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.

    Article  Google Scholar 

  • Dai, Q., Peng, X., Yang, Z., & Zhao, L. (2017). Runoff and erosion processes on bare slopes in the Karst Rocky desertification area. CATENA, 152, 218–226. https://doi.org/10.1016/j.catena.2017.01.013.

    Article  Google Scholar 

  • Daniel, E. B., Camp, J. V., LeBoeuf, E. J., Penrod, J. R., Dobbins, J. P., & Abkowitz, M. D. (2011). Watershed modeling and its applications: A state-of-the-art review. The Open Hydrology Journal. https://doi.org/10.2174/1874378101105010026.

    Article  Google Scholar 

  • Deng, X., Xu, Y., Han, L., Song, S., Yang, L., Li, G., et al. (2015). Impacts of urbanization on river systems in the Taihu Region, China. Water, 7(4), 1340–1358. https://doi.org/10.3390/w7041340.

    Article  Google Scholar 

  • Devia, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A review on hydrological models. Aquatic Procedia, 4, 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126.

    Article  Google Scholar 

  • Dorworth, L. & McCormick, R. (2005). Impacts of development on waterways. Planning with POWER, Purdue University cooperative extension service, West Lafayette, IN, 47907. https://www.extension.purdue.edu/extmedia/ID/ID-257-W.pdf. Accessed on May 01, 2018.

  • Dwarakish, G. S., & Ganasri, B. P. (2015). Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geoscience, 1(1), 1115691. https://doi.org/10.1080/23312041.2015.1115691.

    Article  Google Scholar 

  • FAO. (2002). River basin management: A negotiated approach, an introduction to six cases studies—Case study: Bhima River Basin India. Draft prepared for the Hanoi conference of the dialogue on water, food and environment, both ENDS/Gomukh. Food and Agriculture Organization (FAO), United Nations. http://www.fao.org/tempref/agl/emailconf/wfe2005/Bhima.pdf. Accessed on May 01, 2018.

  • Garg, K. K., Bharati, L., Gaur, A., George, B., Acharya, S., Jella, K., et al. (2012). Spatial mapping of agricultural water productivity using the SWAT model in Upper Bhima Catchment, India. Irrigation and Drainage, 61(1), 60–79. https://doi.org/10.1002/ird.618.

    Article  Google Scholar 

  • Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211–1250. https://doi.org/10.13031/2013.23637.

    Article  Google Scholar 

  • Gaur, A. & Amerasinghe, P. (2011). A river basin perspective of water resources and challenges. India infrastructure report. https://www.idfc.com/pdf/report/2011/Chp-1-A-River-Basin-Perspective-of-Water-Resources-and-C.pdf. Accessed on May 01, 2018.

  • Gebremicael, T. G., Mohamed, Y. A., van der Zaag, P., & Hagos, E. Y. (2017). Quantifying longitudinal land use change from land degradation to rehabilitation in the headwaters of Tekeze-Atbara Basin, Ethiopia. Science of the Total Environment, 622–623, 1581–1589.

    Google Scholar 

  • Gumindoga, W., Rientjes, T., Shekede, M. D., Rwasoka, D. T., Nhapi, I., & Haile, A. T. (2014). Hydrological impacts of urbanization of two catchments in Harare, Zimbabwe. Remote Sensing, 6(12), 12544–12574. https://doi.org/10.3390/rs61212544.

    Article  Google Scholar 

  • Gyamfi, C., Ndambuki, J. M., & Salim, R. W. (2016). Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water, 8(12), 588. https://doi.org/10.3390/w8120588.

    Article  Google Scholar 

  • Hall, S. J., Ahmed, B., Ortiz, P., Davies, R., Sponseller, R. A., & Grimm, N. B. (2009). Urbanization alters soil microbial functioning in the Sonoran Desert. Ecosystems, 12(4), 654–671. https://doi.org/10.1007/s10021-009-9249-1.

    Article  Google Scholar 

  • Helsel, D. R., & Hirsch, R. M. (1992). Statistical methods in water resources (Vol. 49). New York: Elsevier. http://water.usgs.gov/pubs/twri/twri4a3/. Accessed on March 07, 2016.

  • Hepp, L. U., Milesi, S. V., Biasi, C., & Restello, R. M. (2010). Effects of agricultural and urban impacts on macroinvertebrates assemblages in streams (Rio Grande do Sul, Brazil). Zoologia (Curitiba), 27(1), 106–113. https://doi.org/10.1590/S1984-46702010000100016.

    Article  Google Scholar 

  • Jain, P. K. (2009). Groundwater information of Pune district, Maharashtra. Technical report 1612/DBR/2009, Central Ground Water Board (CGWB), Nagpur, India.

  • Jawak, S. D., Devliyal, P., & Luis, A. J. (2015). A comprehensive review on pixel oriented and object oriented methods for information extraction from remotely sensed satellite images with a special emphasis on cryospheric applications. Advances in Remote Sensing, 4(03), 177. https://doi.org/10.4236/ars.2015.43015.

    Article  Google Scholar 

  • Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective (3rd ed.). Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Karnieli, A. (1990). Application of kriging technique to areal precipitation mapping in Arizona. GeoJournal, 22(4), 391–398.

    Article  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods (4th ed.). London: Charles Griffin.

    Google Scholar 

  • Kyriakidis, P. C., Kim, J., & Miller, N. L. (2001). Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. Journal of Applied Meteorology, 40(11), 1855–1877.

    Article  Google Scholar 

  • Li, Z., Deng, X., Wu, F., & Hasan, S. S. (2015). Scenario analysis for water resources in response to land use change in the middle and upper reaches of the Heihe River Basin. Sustainability, 7(3), 3086–3108. https://doi.org/10.3390/su7033086.

    Article  Google Scholar 

  • Mani, R. (2009). River basins and river basin organisations in South Asia: River Basin Bhima, India. India Water Portal. http://www.indiawaterportal.org/sites/indiawaterportal.org/files/Bhima.pdf. Accessed on May 01, 2018.

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13, 245–259.

    Article  Google Scholar 

  • Matthaei, C. D., Piggott, J. J., & Townsend, C. R. (2010). Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. Journal of Applied Ecology, 47(3), 639–649. https://doi.org/10.1111/j.1365-2664.2010.01809.x.

    Article  Google Scholar 

  • Mertler, C. A., & Reinhart, R. V. (2016). Advanced and multivariate statistical methods: Practical application and interpretation. Boca Raton: Taylor & Francis. ISBN 978-18-845-8584-5.

    Google Scholar 

  • Miller, S. N., Kepner, W. G., Mehaffey, M. H., Hernandez, M., Miller, R. C., Goodrich, D. C., et al. (2002). Integrating landscape assessment and hydrologic modeling for land cover change analysis. JAWRA Journal of the American Water Resources Association, 38(4), 915–929.

    Article  Google Scholar 

  • Ministry of Environment and Forests (MoEF) Report, Government of India. (2010). State of environment (SoE) report: Maharashtra, final draft. http://moef.nic.in/. Accessed on March 27, 2015.

  • Mishra, N., Aggarwal, S. P. & Dadhwal, V. K. (2008). Macroscale hydrological modelling and impact of land cover change on stream flows of the Mahanadi River Basin. A Master thesis submitted to Andhra University, Indian Institute of Remote Sensing (National Remote Sensing Agency), Department of Space, Government of India.

  • Misra, D., Daanen, R. P., & Thompson, A. M. (2011). Base flow/groundwater flow. In V. P. Singh, P. Singh, & U. K. Haritashya (Eds.), Encyclopedia of snow, ice and glaciers. Encyclopedia of earth sciences series. Dordrecht: Springer. https://doi.org/10.1007/978-90-481-2642-2_36. ISBN 978-90-481-2642-2.

    Chapter  Google Scholar 

  • Mohan, M., Pathan, S. K., Narendrareddy, K., Kandya, A., & Pandey, S. (2011). Dynamics of urbanization and its impact on land-use/land-cover: A case study of megacity Delhi. Journal of Environmental Protection, 2(09), 1274. https://doi.org/10.4236/jep.2011.29147.

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153.

    Article  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.

    Article  Google Scholar 

  • Nathan, N. S., Saravanane, R., & Sundararajan, T. (2017). Spatial variability of ground water quality using HCA, PCA and MANOVA at Lawspet, Puducherry in India. Computational Water, Energy, and Environmental Engineering, 6(03), 243. https://doi.org/10.4236/cweee.2017.63017.

    Article  Google Scholar 

  • National Informatics Center (NIC)-District Pune, Government of India. (2009). District gazetteer information. http://pune.nic.in/puneCollectorate/Gazette/gaz.aspx. Accessed on January 16, 2015.

  • Niphadkar, M., Nagendra, H., Tarantino, C., Adamo, M., & Blonda, P. (2017). Comparing pixel and object-based approaches to map an understorey invasive shrub in tropical mixed forests. Frontiers in Plant Science, 8, 892. https://doi.org/10.3389/fpls.2017.00892.

    Article  Google Scholar 

  • Ojha, C. S. P., Berndtsson, R., & Bhunya, P. K. (2008). Engineering hydrology. Oxford: Oxford University Press. ISBN-10: 0-19-569461-9.

    Google Scholar 

  • Park, N. W., Kyriakidis, P. C., & Hong, S. (2017). Geostatistical integration of coarse resolution satellite precipitation products and rain gauge data to map precipitation at fine spatial resolutions. Remote Sensing, 9(3), 255.

    Article  Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32(1), 333–365. https://doi.org/10.1007/978-0-387-73412-5_12.

    Article  Google Scholar 

  • Rahman, M. T., Aldosary, A. S., & Mortoja, M. G. (2017). Modeling future land cover changes and their effects on the land surface temperatures in the Saudi Arabian eastern coastal city of Dammam. Land, 6(2), 36. https://doi.org/10.3390/land6020036.

    Article  Google Scholar 

  • Samal, D. R., & Gedam, S. S. (2015). Monitoring land use changes associated with urbanization: An object based image analysis approach. European Journal of Remote Sensing, 48(1), 85–99. https://doi.org/10.5721/EuJRS20154806.

    Article  Google Scholar 

  • Sarangi, A., Cox, C. A., & Madramootoo, C. A. (2005). Geostatistical methods for prediction of spatial variability of rainfall in a mountainous region. Transactions of the ASAE, 48(3), 943–954.

    Article  Google Scholar 

  • Shukla, A. K., Ojha, C. S. P., Mijic, A., Buytaert, W., Pathak, S., Garg, R. D., et al. (2017). Population growth–land use/land cover transformations—Water quality nexus in Upper Ganga River basin. Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-2017-384.

    Article  Google Scholar 

  • Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. R. (2005). Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2(4), 263–275. https://doi.org/10.1080/15730620500386529.

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (2017). Watershed academy web: Growth and water resources. https://cfpub.epa.gov/. Accessed on March 23, 2017.

  • Wagner, P. D., Kumar, S., & Schneider, K. (2013). An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrology and Earth System Sciences, 17(6), 2233–2246.

    Article  Google Scholar 

  • Wangpimool, W., Pongput, K., Tangtham, N., Prachansri, S., & Gassman, P. W. (2016). The impact of Para rubber expansion on streamflow and other water balance components of the Nam Loei river basin, Thailand. Water, 9(1), 1. https://doi.org/10.3390/w9010001.

    Article  Google Scholar 

  • Water Resources Department (WRD), Government of Maharashtra, India. (2018). Upper Bhima Sub basin draft report. https://wrd.maharashtra.gov.in/portal/content/default/pdf/events/K5Draft.pdf. Accessed on May, 01 2018.

  • Weitzell, R. E., Kaushal, S. S., Lynch, L. M., Guinn, S. M., & Elmore, A. J. (2016). Extent of stream burial and relationships to watershed area, topography, and impervious surface area. Water, 8(11), 538. https://doi.org/10.3390/w8110538.

    Article  Google Scholar 

  • Welde, K., & Gebremariam, B. (2017). Effect of land use land cover dynamics on hydrological response of watershed: Case study of Tekeze Dam watershed, northern Ethiopia. International Soil and Water Conservation Research, 5(1), 1–16.

    Article  Google Scholar 

  • Woldesenbet, T. A., Elagib, N. A., Ribbe, L., & Heinrich, J. (2017). Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Science of the Total Environment, 575, 724–741. https://doi.org/10.1016/j.scitotenv.2016.09.124.

    Article  Google Scholar 

  • Yin, Z., Xiao, H., Zou, S., Zhu, R., Lu, Z., Lan, Y., et al. (2014). Simulation of hydrological processes of mountainous watersheds in inland river basins: Taking the Heihe Mainstream River as an example. Journal of Arid Land, 6(1), 16–26. https://doi.org/10.1007/s40333-013-0197-4.

    Article  Google Scholar 

  • Zhao, H. & Chen, X. (2005). Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. In Proceedings of 2005 IEEE international geoscience and remote sensing symposium, IGARSS’05 (Vol. 3, pp. 1666–1668).

  • Zhu, C., & Li, Y. (2014). Long-term hydrological impacts of land use/land cover change from 1984 to 2010 in the Little River Watershed, Tennessee. International Soil and Water Conservation Research, 2(2), 11–21.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge all the support provided by Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India. We would like to express our gratitude to various national and international Government organizations including H. P. Office, Nasik; Survey of India; NBSS&LUP, Nagpur, India; Bhuvan Portal, ISRO, India; Prediction of Worldwide Energy Resource (POWER), NASA, USA; United States Geological Survey (USGS), USA for providing the necessary datasets to carry out the study. We are also grateful to anonymous reviewers for their valuable suggestions that helped to improve the manuscript further.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyavati Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S., Gedam, S. Evaluating Hydrological Responses to Urbanization in a Tropical River Basin: A Water Resources Management Perspective. Nat Resour Res 28, 327–347 (2019). https://doi.org/10.1007/s11053-018-9390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9390-7

Keywords

Navigation