Skip to main content

Advertisement

Log in

Modeling the effects of historical and future land use/land cover change dynamics on the hydrological response of Ashi watershed, northeastern China

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The impact of anthropogenic activities in major river watersheds leading to alterations in the environment has triggered this study within the Ashi watershed of northeast China. Understanding individual land use/land cover (LULC) change contribution to watershed hydrology is vital for water resource planning, utilization of land resources and sustaining hydrological balance. This research investigates the influence of LULC alteration on the hydrology of the watershed from 1990 to 2014 and predicts LULC impacts on the hydrological components under different scenarios in 2030. Combined approach for Landsat images classification; Cellular-Automated (CA-Markov) for prediction and Soil and Water Assessment Tool were used. Partial least square regression (PLSR) model was applied to quantify the contribution of each LULC on hydrology. The results show that urban, water, agriculture, open canopy and other vegetation experienced an increment from 1990 to 2014. The predicted LULC for 2030 based on worst-case scenarios indicates urbanization and agriculture increase, while best-case scenario indicates a controlled expansion trend of urban and agriculture and regeneration of closed canopy. The changes in LULC increase stream flow (11.5%), surface runoff (86.6%), water yield (10.5%) but reduce lateral flow (64.9%), groundwater (27.9%) and ET (1%). Stream flow, water yield, surface runoff, lateral flow and evapotranspiration are expected to further increase under both scenarios, increasing more in the worst-case scenario. Urban, agriculture and close forest contributed in determining hydrological processes and are therefore chief environmental stressors in the Ashi watershed. This recommends regulating urban sprawl and agricultural activities to maintain hydrological balance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbaspour, K. C. (2013). SWAT-CUP 2012. SWAT calibration and uncertainty program—A user manual.

  • Abdi, H. (2010). Partial least squares regression and projection on latent structure regression (PLS regression). WIREs Computational Statistics, 2(1), 97–106. https://doi.org/10.1002/wics.51.

    Article  Google Scholar 

  • Abe, C. A., Lobo, F. D. L., Dibike, Y. B., Costa, M. P. D. F., Dos Santos, V., & Novo, E. M. L. (2018). Modelling the effects of historical and future land cover changes on the hydrology of an Amazonian Basin. Water, 10(7), 932.

    Article  Google Scholar 

  • Akbarimehr, M., & Naghdi, R. (2012). Assessing the relationship of slope and runoff volume on skid trails (case study: Nav 3 district). Journal of Forest Science., 58(8), 357–362. https://doi.org/10.17221/26/2012-JFS.

    Article  Google Scholar 

  • Alvarez, S., Asci, S., & Vorotnikova, E. (2016). Valuing the potential benefits of water quality improvements in watersheds affected by non-point source pollution. Water, 8(4), 112. https://doi.org/10.3390/w8040112.

    Article  Google Scholar 

  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., et al. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508. https://doi.org/10.13031/2013.42256.

    Article  Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development 1. Journal of the American Water Resource Association, 34(1), 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.

    Article  CAS  Google Scholar 

  • Awotwi, A., Anornu, G. K., Quaye-Ballard, J. A., Annor, T., Forkuo, E. K., Harris, E., et al. (2019). Water balance responses to land-use/land-cover changes in the Pra River Basin of Ghana, 1986–2025. CATENA, 182, 104129. https://doi.org/10.1016/j.catena.2019.104129.

    Article  Google Scholar 

  • Barbosa, A. E., Fernandes, J. N., & David, L. M. (2012). Key issues for sustainable urban stormwater management. Water Research, 46(20), 6787–6798. https://doi.org/10.1016/j.watres.2012.05.029.

    Article  CAS  Google Scholar 

  • Choto, M., & Fetene, A. (2019). Impacts of land use/land cover change on stream flow and sediment yield of Gojeb watershed, Omo-Gibe basin, Ethiopia. Remote Sensing Applications: Society and Environment, 14, 84–89.

    Article  Google Scholar 

  • Cox, I., & Gaudard, M. (2013). A deeper understanding of PLS. Discovering partial least squares with JMP, pp. 37–75.

  • Eisakhani, M., Pauzi, A., Karim, O., Malakahmad, A., Kutty, S. M., & Isa, M. H. (2009). GIS-based non-point sources of pollution simulation in Cameron Highlands. Malaysia, 3(3), 1–5.

    Google Scholar 

  • Foster, S., Pulido-Bosch, A., Vallejos, Á., Molina, L., Llop, A., & MacDonald, A. M. (2018). Impact of irrigated agriculture on groundwater-recharge salinity: A major sustainability concern in semi-arid regions. Hydrogeology Journal, 26(8), 2781–2791. https://doi.org/10.1007/s10040-018-1830-2.

    Article  CAS  Google Scholar 

  • Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2018). Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Science of the Total Environment, 619, 1394–1408.

    Article  Google Scholar 

  • Gebremicael, T. G., Mohamed, Y. A., Betrie, G. D., van der Zaag, P., & Teferi, E. (2013). Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. Journal of Hydrology, 482, 57–68. https://doi.org/10.1016/j.jhydrol.2012.12.023.

    Article  Google Scholar 

  • Getachew, H. E., & Melesse, A. M. (2012). The impact of land use change on the hydrology of the Angereb Watershed, Ethiopia. International Journal of Water Science, 1(6), 1–7.

    Google Scholar 

  • Godoy, J. L., Vega, J. R., & Marchetti, J. L. (2014). Relationships between PCA and PLS-regression. Chemometrics and Intelligent Laboratory Systems, 130, 182–191. https://doi.org/10.1016/j.chemolab.2013.11.008.

    Article  CAS  Google Scholar 

  • Goonetilleke, A., Thomas, E., Ginn, S., & Gilbert, D. (2005). Understanding the role of land use in urban stormwater quality management. Journal of Environmental Management, 74(1), 31–42. https://doi.org/10.1016/j.jenvman.2004.08.006.

    Article  CAS  Google Scholar 

  • Gwate, O., Woyessa, Y. E., & Wiberg, D. (2015). Dynamics of land cover and impact on stream flow in the Modder river basin of South Africa: Case study of a quaternary catchment. International Journal of Environmental Protection and Policy, 3(2), 31–38. https://doi.org/10.11648/j.ijepp.20150302.12.

    Article  Google Scholar 

  • Gyamfi, C., Ndambuki, J., & Salim, R. (2016). Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water, 8(12), 588. https://doi.org/10.3390/w8120588.

    Article  Google Scholar 

  • Han, H., Yang, C., & Song, J. (2015). Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability, 7(4), 4260–4279. https://doi.org/10.3390/su7044260.

    Article  Google Scholar 

  • Jun, Z., Yun, M., Zhen, Y., Baoyuan, P., Weiguang, S., Jing, L., et al. (2011). Load and status evaluation of agricultural non-point source pollution in Ashi River Basin. Journal of Environmental Science and Management, 36(5), 164–168.

    Google Scholar 

  • Karamage, F., Zhang, C., Fang, X., Liu, T., Ndayisaba, F., Nahayo, L., et al. (2017). Modeling rainfall-runoff response to land use and land cover change in Rwanda (1990–2016). Water, 9(2), 147. https://doi.org/10.3390/w9020147.

    Article  Google Scholar 

  • Kuai, P., Li, W., & Liu, N. (2015). Evaluating the effects of land use planning for non-point source pollution based on a system dynamics approach in China. PLoS ONE, 10(8), e0135572. https://doi.org/10.1371/journal.pone.0135572.

    Article  CAS  Google Scholar 

  • Kushwaha, A., & Jain, M. K. (2013). Hydrological simulation in a forest dominated watershed in Himalayan region using SWAT model. Water Resources Management, 27(8), 3005–3023. https://doi.org/10.1007/s11269-013-0329-9.

    Article  Google Scholar 

  • Leach, N. P. (2015). Hydrologic response of land use and land cover changes. A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in Civil and Environmental Engineering in the Graduate College of The University of Iowa.

  • Li, X. B. (1999). Change of arable land area in China during the past 20 years and its policy implications. Natural Resources Journal, 14(4), 329–333.

    Google Scholar 

  • Li, G. Z. (2015). The sustainable energy and economy development in Northeast China. Chemical Engineering Transactions, 46, 883–888. https://doi.org/10.3303/CET1546148.

    Article  CAS  Google Scholar 

  • Li, N., Tian, Y., Zhang, J., Zuo, W., Zhan, W., & Zhang, J. (2017a). Heavy metal contamination status and source apportionment in sediments of Songhua River Harbin region, Northeast China. Environmental Science and Pollution Research International, 24(4), 3214–3225. https://doi.org/10.1007/s11356-016-7132-0.

    Article  CAS  Google Scholar 

  • Li, Z., Wang, L., Sung, X., Ma, F., Jiang, X., & Liang, X. (2017b). Non-point source pollution changes in future climate scenarios: A case study of Ashi River, China. Fresenius Environmental Bulletin, 26(11), 6621–6631.

    CAS  Google Scholar 

  • Li, F., Zhang, G., Li, H., & Lu, W. (2019). Land use change impacts on hydrology in the Nenjiang River Basin, Northeast China. Forests, 10(6), 476. https://doi.org/10.3390/f10060476.

    Article  Google Scholar 

  • Liping, C., Yujun, S., & Saeed, S. (2018). Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS ONE, 13(7), e0200493. https://doi.org/10.1371/journal.pone.0200493.

    Article  CAS  Google Scholar 

  • Liu, S. H., & He, S. J. (2002). A spatial analysis model for measuring the rate of land use change. Journal of Natural Resources, 5, 2002–2005.

    Google Scholar 

  • Liu, Q., Liang, L., Cai, Y., Wang, X., & Li, C. (2018). Assessing climate and land-use change impacts on streamflow in a mountainous catchment. Journal of Water and Climate Change. https://doi.org/10.2166/wcc.2018.234.

    Article  Google Scholar 

  • Liu, S., Zhang, P., & Lo, K. (2014). Urbanization in remote areas: A case study of the Heilongjiang Reclamation Area, Northeast China. Habitat International, 42, 103–110. https://doi.org/10.1016/j.habitatint.2013.11.003.

    Article  Google Scholar 

  • Liu, Y., Zhang, X., Xia, D., You, J., Rong, Y., & Bakir, M. (2011). Impacts of land-use and climate changes on hydrologic processes in the Qingyi River watershed, China. Journal of Hydrologic Engineering, 18(11), 1495–1512. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000485.

    Article  Google Scholar 

  • Ma, F., Jiang, X. F., Wang, L., Li, G. M., & Li, Z. (2016). Non-point source pollution control of Ashi Basin based on SWAT model. Journal of Environmental Science-China, 36(2), 610–618.

    CAS  Google Scholar 

  • Ma, F., Jiang, X., Wang, L., Li, Z., & Liang, X. (2015a). Distributed simulation of non-point source pollution in Ashi River Basin. Journal of Harbin Institute of Technology. https://doi.org/10.11916/j.issn.1005-9113.2015.03.005.

    Article  Google Scholar 

  • Ma, G., Wang, Y., Bao, X., Hu, Y., Liu, Y., He, L., et al. (2015b). Nitrogen pollution characteristics and source analysis using the stable isotope tracing method in Ashi River, northeast China. Environmental Earth Science, 73(8), 4831–4839. https://doi.org/10.1007/s12665-014-3786-4.

    Article  CAS  Google Scholar 

  • Ma, W. L., Liu, L. Y., Qi, H., Zhang, Z. F., Song, W. W., Shen, J. M., et al. (2013). Polycyclic aromatic hydrocarbons in water, sediment and soil of the Songhua River Basin, China. Environmental Monitoring Assessment, 185(10), 8399–8409. https://doi.org/10.1007/s10661-013-3182-7.

    Article  CAS  Google Scholar 

  • Manandhar, R., Odeh, I., & Ancev, T. (2009). Improving the accuracy of land use and land cover classification of landsat data using post-classification enhancement. Remote Sensing, 1(3), 330–344. https://doi.org/10.3390/rs1030330.

    Article  Google Scholar 

  • Mishra, V. N., & Rai, P. K. (2016). A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arabian Journal of Geosciences, 9(4), 249. https://doi.org/10.1007/s12517-015-2138-3.

    Article  Google Scholar 

  • Monserud, R. (1990). Methods for comparing global vegetation maps, report WP-90-40. Laxenburg: IIASA.

    Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153.

    Article  Google Scholar 

  • Neitsch, S., Arnold, J., Kiniry, J., & Williams, J. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute. Technical report no. 406. 618.

  • Nie, W., Yuan, Y., Kepner, W., Nash, M. S., Jackson, M., & Erickson, C. (2011). Assessing impacts of landuse and landcover changes on hydrology for the upper San Pedro watershed. Journal of Hydrology, 407(1–4), 105–114. https://doi.org/10.1016/j.jhydrol.2011.07.012.

    Article  Google Scholar 

  • Ottinger, M., Kuenzer, C., Liu, G., Wang, S., & Dech, S. (2013). Monitoring land cover dynamics in the Yellow River Delta from 1995 to 2010 based on Landsat 5 TM. Applied Geography, 44, 53–68. https://doi.org/10.1016/j.apgeog.2013.07.003.

    Article  Google Scholar 

  • Pal, S., & Talukdar, S. (2018). Assessing the role of hydrological modifications on land use/land cover dynamics in Punarbhaba river basin of Indo-Bangladesh. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0205-0.

    Article  Google Scholar 

  • Puertas, O. L., Henríquez, C., & Meza, F. J. (2014). Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010–2045. Land Use Policy, 38, 415–425. https://doi.org/10.1016/j.landusepol.2013.11.024.

    Article  Google Scholar 

  • Sanadyha, P., Gironás, J., & Arabi, M. (2014). Global sensitivity analysis of hydrologic processes in major snow-dominated mountainous river basins in Colorado. Hydrological Processes, 28(9), 3404–3418. https://doi.org/10.1002/hyp.9896.

    Article  Google Scholar 

  • Santos, R. M. B., Sanches Fernandes, L. F., Cortes, V., Manuel, R., & Leal Pacheco, F. A. (2019). Hydrologic impacts of land use changes in the Sabor River Basin: A historical view and future perspectives. Water, 11(7), 1464.

    Article  Google Scholar 

  • SAS Institute Inc. (2017). JMP® 13 multivariate methods (2nd ed., p. 230). Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Schaffner, M., Bader, H. P., & Scheidegger, R. (2011). Modeling non-point source pollution from rice farming in the Thachin River Basin. Environment, Development and Sustainability, 13(2), 403–422. https://doi.org/10.1007/s10668-010-9268-2.

    Article  Google Scholar 

  • Schilling, K. E., Chan, K.-S., Liu, H., & Zhang, Y.-K. (2010). Quantifying the effect of land use land cover change on increasing discharge in the Upper Mississippi River. Journal of Hydrology, 387(3), 343–345.

    Article  Google Scholar 

  • Shang, X., Jiang, X., Jia, R., & Wei, C. (2019). Land use and climate change effects on surface runoff variations in the Upper Heihe River Basin. Water, 11(2), 344. https://doi.org/10.3390/w11020344.

    Article  Google Scholar 

  • Shen, Z., Liao, Q., Hong, Q., & Gong, Y. (2012). An overview of research on agricultural non-point source pollution modelling in China. Separation and Purification Technology, 84, 104–111. https://doi.org/10.1016/j.seppur.2011.01.018.

    Article  CAS  Google Scholar 

  • Shi, Z. H., Ai, L., Li, X., Huang, X. D., Wu, G. L., & Liao, W. (2013). Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. Journal of Hydrology, 498, 165–176. https://doi.org/10.1016/j.jhydrol.2013.06.031.

    Article  Google Scholar 

  • Shrestha, S., Bhatta, B., Shrestha, M., & Shrestha, P. K. (2018). Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Science of Total Environment, 643, 1610–1622. https://doi.org/10.1016/j.scitotenv.2018.06.306.

    Article  CAS  Google Scholar 

  • Shukla, S., Gedam, S., & Khire, M. V. (2018). Implications of demographic changes and land transformations on surface water quality of rural and urban subbasins of Upper Bhima River basin, Maharashtra, India. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0187-y.

    Article  Google Scholar 

  • Sun, B., Zhang, L., Yang, L., Zhang, F., Norse, D., & Zhu, Z. (2012). Agricultural non-point source pollution in China: Causes and mitigation measures. Ambio, 41(4), 370–379. https://doi.org/10.1007/s13280-012-0249-6.

    Article  CAS  Google Scholar 

  • Trap, J., Hättenschwiler, S., Gattin, I., & Aubert, M. (2013). Forest ageing: An unexpected driver of beech leaf litter quality variability in European forests with strong consequences on soil processes. Forest Ecology and Management, 302, 338–345.

    Article  Google Scholar 

  • Wagner, P. D., Kumar, S., & Schneider, K. (2013). An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrology and Earth System Sciences, 17(6), 2233–2246. https://doi.org/10.5194/hess-17-2233-2013.

    Article  Google Scholar 

  • Wang, G., Xia, J., & Chen, J. (2009). Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: A case study of the Chaobai River basin in northern China. Water Resources Research. https://doi.org/10.1029/2007wr006768.

    Article  Google Scholar 

  • Wang, Y., Yu, X., He, K., Li, Q., Zhang, Y., & Song, S. (2011). Dynamic simulation of land use change in Jihe watershed based on CA-Markov model. Transactions of the Chinese Society of Agricultural Engineering, 27(12), 330–336. https://doi.org/10.3969/j.issn.1002-6819.2011.12.062.

    Article  CAS  Google Scholar 

  • Welde, K., & Gebremariam, B. (2017). Effect of land use land cover dynamics on hydrological response of watershed: Case study of Tekeze Dam watershed, northern Ethiopia. Journal of Soil and Water Conservation, 5(1), 1–16. https://doi.org/10.1016/j.iswcr.2017.03.002.

    Article  Google Scholar 

  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1.

    Article  CAS  Google Scholar 

  • Woldesenbet, T. A., Elagib, N. A., Ribbe, L., & Heinrich, J. (2017). Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Science of the Total Environment, 575, 724–741.

    Article  CAS  Google Scholar 

  • Yan, B., Fang, N. F., Zhang, P. C., & Shi, Z. H. (2013). Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. Journal of Hydrology, 484, 26–37. https://doi.org/10.1016/j.jhydrol.2013.01.008.

    Article  Google Scholar 

  • Yang, L., Feng, Q., Yin, Z., Wen, X., Si, J., Li, C., et al. (2017). Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, Northwest China. Hydrological Processes, 31(5), 1100–1112. https://doi.org/10.1002/hyp.11098.

    Article  CAS  Google Scholar 

  • Yeboah, F., Awotwi, A., Forkuo, E. K., & Kumi, M. (2017). Assessing the land use and land cover changes due to urban growth in Accra, Ghana. Journal of Basic and Applied Research International, 22(2), 43–50. Retrieved from http://www.ikpress.org/abstract/6349. Accessed 02/05/2019.

  • Yu, H., Wang, Y., Teng, Y., Xiang, B., Ma, G., & Fang, G. (2015). Source apportionment of non-point source nitrogen pollution in Ashi River Basin using δ15N technique. Journal of Agriculture and Environmental Sciences, 34(12), 2327–2335.

    Google Scholar 

  • Zhang, L., Nan, Z., Xu, Y., & Li, S. (2016). Hydrological impacts of land use change and climate variability in the headwater region of the Heihe River Basin, Northwest China. PLoS ONE, 11(6), e0158394. https://doi.org/10.1371/journal.pone.0158394.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Key Research and Development Program of China (Project No. 2016YFC0401105), and the Major Science and Technology Program for Water pollution control and treatment (2012ZX07201003) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tankpa, V., Wang, L., Awotwi, A. et al. Modeling the effects of historical and future land use/land cover change dynamics on the hydrological response of Ashi watershed, northeastern China. Environ Dev Sustain 23, 7883–7912 (2021). https://doi.org/10.1007/s10668-020-00952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00952-2

Keywords

Navigation