Skip to main content

Advertisement

Log in

Mineral Systems Analysis and Artificial Neural Network Modeling of Chromite Prospectivity in the Western Limb of the Bushveld Complex, South Africa

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Radial basis function link neural network (RBFLN) and fuzzy-weights of evidence (fuzzy-WofE) methods were used to assess regional-scale prospectivity for chromite deposits in the Western Limb and the Nietverdiend layered mafic intrusion of the Bushveld Complex in South Africa. Five predictor maps derived from geological, geochemical and geophysical data were processed in a GIS environment and used as spatial proxy for critical processes that were most probably responsible for the formation of the chromite deposits in the study area. The RBFLN was trained using input feature vectors that correspond to known deposits, prospects and non-deposits. The training was initiated by varying the number of radial basis functions (RBFs) and iterations. The results of training the RBFLN provided optimum number of RBFs and iterations that were used for classification of the input feature vectors. The results show that the network classified 73% of the validation deposits into highly prospective areas for chromite deposit, covering 6.5% of the study area. The RBFLN entirely classified all the non-deposit validation points into low prospectivity areas, occupying 86.6% of the study area. In general, the efficiency of the RBFLN in classifying the validation deposits and non-deposits indicates the degree of spatial relationship between the input feature vectors and the training points, which represent chrome mines and prospects. The RBFLN and fuzzy-WofE analyses used in this study are important in guiding identification of regional-scale prospect areas where further chromite exploration can be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral potential maps. Natural Resource Research, 14, 1–17.

    Article  Google Scholar 

  • Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In G. Gaal & D. F. Merriam (Eds.), Computer applications in resource estimation: Predictions and assessment for metals and petroleum (pp. 1–21). Oxford: Pergamon.

    Google Scholar 

  • Begg, G. C., Griffin, W. L., Natapov, L. M., O’Reilly, S. Y., Grand, S. P., O’Neill, C. J., et al. (2009). The lithospheric architecture of Africa: Seismic tomography, mantle petrology and tectonic evolution. Geophysics, 5, 23–50.

    Google Scholar 

  • Behnia, P. (2007). Application of radial basis functional link networks to exploration for Proterozoic mineral deposits in Central Iran. Natural Resource Research, 16, 147–155.

    Article  Google Scholar 

  • Beucher, A., Siemssen, R., Fröjdö, S., Österholm, P., Martinkauppi, A., & Edèn, P. (2015). Artificial neural network for mapping and characterization of acid sulfate soils: Application to Sirppujoki River catchment, southwestern Finland. Geoderma, 247, 38–50.

    Article  Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographical information systems for geoscientists, modeling with GIS (p. 398). Oxford: Pergamon Press.

    Google Scholar 

  • Bonham-Carter, G. F., & Agterberg, F. P. (1990). Application of microcomputer based geographic information system to mineral potential mapping. In J. T. Hanley & D. F. Merriam (Eds.), Microcomputer-based application in geology, II (pp. 49–74). New York: Petroleum Pergamon Press.

    Chapter  Google Scholar 

  • Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47(4), 757–770.

    Article  Google Scholar 

  • Burns, R. (1975). Crystal field effects in chromium and its partitioning in the mantle. Geochimica et Cosmochimica Acta, 30, 857–864.

    Article  Google Scholar 

  • Cameron, E. N. (1978). The lower zone of the eastern Bushveld Complex in the Olifants River trough. Journal of Petrology, 19, 437–462.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001). Geologically-constrained fuzzy mapping of gold mineralization potential, Baguio District, Philippines. Natural Resource Research, 10, 125–136.

    Article  Google Scholar 

  • Carranza, E. J. M., Hale, M., & Faassen, C. (2008). Selection of coherent deposit type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Review, 33, 536–558.

    Article  Google Scholar 

  • Carranza, E. J. M., Sadeghi, M., & Billay, A. (2015). Predictive mapping of prospectivity for orogenic gold, Giyani Greenstone Belt (South Africa). Journal of Ore Geology Review, 71, 703–718.

    Article  Google Scholar 

  • Cawthorn, R. G. (2005). Pressure fluctuations and the formation of PGE-rich Merensky and chromitite reefs, Bushveld Complex. Mineralium Deposita, 40, 231–235.

    Article  Google Scholar 

  • Cawthorn, R. G., & Boerst, K. (2006). Origin of pegmatitic pyroxenite in the Merensky Unit, Bushveld Complex, South Africa. Journal of Geology, 47, 1509–1530.

    Google Scholar 

  • Cawthorn, R. G., Merkle, R. K. W., & Viljoen, M. J., (2002). Platinum group elements deposits in the Bushveld Complex, South Africa. In Cabri, L. J. (Ed.), The geology, geochemistry, mineralogy and mineral beneficiation of PGEs. Canadian Institute Mineralogy and Metallurgy Special publication, 54, pp. 389–429.

  • Cawthorn, R. G., & Walraven, F. (1998). Emplacement and crystallization time for the Bushveld Complex. Journal of Petrology, 39, 1669–1687.

    Article  Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resource Research, 8, 27–35.

    Article  Google Scholar 

  • Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weights of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (northern Appennines, Italy). Geomorphology, 111, 79–87.

    Article  Google Scholar 

  • Du Plessis, C. P., & Walraven, F. (1990). The tectonic setting of the Bushveld Complex in South Africa, Part 1, Structural deformation and distribution. Tectonophysics, 179, 305–319.

    Article  Google Scholar 

  • Eales, H. V. (2000). Implications of the chromium budget of the Western Limb of the Bushveld Complex. South African Journal of Geology, 103, 141–150.

    Article  Google Scholar 

  • Eales, H. V., & Cawthorn, R. G. (1996). The bushveld complex: In Cawthorn, R. G. (Ed.) Layered intrusions. Development in Petrology 15, pp. 103–145

  • Eales, H. V., Field, M., de Klerk, W. J., & Scoon, R. N. (1988). Regional trends of chemical variation and thermal erosion in the Upper Critical Zone, western Bushveld Complex. Mineralogy Magazine, 52, 63–79.

    Article  Google Scholar 

  • Ford, A., & Blenkinsop, T. G. (2008). Evaluating geological complexity and complexity gradients as controls on copper mineralization, Mt Isa Inlier. Australian Journal of Earth Sciences, 55, 13–23.

    Article  Google Scholar 

  • Good, N., & de Wit, M. J. (1997). The Thabazimbi Murchison Lineament of the Kaapvaal craton, South Africa: 2700 Ma of episodic deformation. Journal of Geological Society of London, 154, 93–97.

    Article  Google Scholar 

  • Groves, D. I., Condie, K. C., Goldfarb, R. J., Hornsky, J. M. A., & Vielreicher, R. M. (2005). 100th anniversary special paper: Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Economic Geology, 100, 203–224.

    Article  Google Scholar 

  • Groves, D. I., Ho, S. E., Rock, N. M. S., Barley, M. E., & Mugeridge, M. T. (1987). Archaean cratons, diamond and platinum: Evidence for coupled long-lived crust-mantle systems. Geology, 15, 801–805.

    Article  Google Scholar 

  • Harris, D. P., & Pan, G. C. (1999). Mineral favorability mapping: comparison of artificial neural networks, logistic regression and discriminate analysis. Natural Resource Research, 8, 93–109.

    Article  Google Scholar 

  • Hatton, C. J., & von Gruenewaldt, G. (1987). The geological setting and petrogenesis of the Bushveld chromitite layers. In C. W. Stowe (Ed.), Evolution of chromium ore fields (pp. 109–143). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Hodkiewicz, P. F., Weinberg, R. F., Gardoll, S. J., & Groves, I. D. (2005). Complexity gradient in the Yilgarn craton: fundamental controls on crustal scale fluid-flow and the formation of world-class orogenic-gold deposits. Australian Journal of Earth Sciences, 52, 831–841.

    Article  Google Scholar 

  • Holzer, L., Barton, J. R., Paya, B. K., & Kramers, J. D. (1999). Tectonothermal history in the western part of the Limpopo Belt: Test of the tectonic models and new perspectives. Journal of African Earth Science, 28, 383–402.

    Article  Google Scholar 

  • Irvine, T. N. (1977). Origin of chromitite layers in the Muskox intrusion and other layered intrusions: A new interpretation. Geology, 5, 273–277.

    Article  Google Scholar 

  • Kemp, L. D., Bonham-Carter, G. F., Raines, G. L., & Looney, C. G. (2001). ArcSDM: ArcView extension for spatial data modelling. http://netserv.gis.nrcan.gc.ca/sdm

  • Kiefer, R., & Viljoen, M. J. (2006). PGE exploration targets to the west of the Pilanesberg, South Africa. South African Journal of Geology, 109, 459–474.

    Article  Google Scholar 

  • Knox-Robinson, C. M. (2000). Vectorial fuzzy logic: A novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralization potential of the Kalgoorlie terrane, Western Australia. Australian Journal of Earth Sciences, 47, 929–941.

    Article  Google Scholar 

  • Kruger, F. J. (2005). Filling the Bushveld Complex magma chamber: Lateral extension, roof and floor interaction, magmatic unconformities, and the formation of giant chromitite, PGEs and Ti-V-magnetite deposits. Mineralium Deposita, 40, 451–472.

    Article  Google Scholar 

  • Lipin, B. R. (1993). Pressure increase, the formation of chromitite seams, and the development of ultramafic series in the Stillwater Complex, Montana. Journal of Petrology, 34, 955–976.

    Article  Google Scholar 

  • Looney, C. G. (1997). Pattern recognition using neural networks: Theory and algorithm for engineers and scientists (p. 458). New York: Oxford University Press.

    Google Scholar 

  • Looney, C. G. (2002). Radial basis functional link nets and fuzzy reasoning. Neuro-Computing, 48, 489–509.

    Google Scholar 

  • Maier, W. D., & Barnes, S.-J. (2008). Platinum group elements in the UG1 and UG2 chromitites and Bastard reefs at Impala Platinum Mine, Western Bushveld Complex, South Africa: Evidence for late magmatic cumulate instability and reef constitution. South African Journal of Geology, 111, 159–176.

    Article  Google Scholar 

  • Maier, W. D., Barnes, S.-J., & Groves, D. I. (2013). The Bushveld Complex, South Africa: Formation of platinum-palladium, chrome and vanadium-rich layers via hydrodynamic sorting of a mobilized cumulate slurry in a large, relatively slowly cooling subsiding magma chamber. Mineralium Deposita, 48, 1–56.

    Article  Google Scholar 

  • Maier, W. D., & Eales, H. V. (1997). Correlation within the UG2-Merensky Reef interval of the western Bushveld Complex, based on geochemical, mineralogical and petrological data. Geological Survey South Africa Bulletin, 120, 56.

    Google Scholar 

  • Maier, W. D., & Groves, D. I. (2011). Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits. Mineralium Deposita, 46, 841–857.

    Article  Google Scholar 

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Review, 38, 128–138.

    Article  Google Scholar 

  • Mondal, S. K., & Mathez, E. A. (2007). Origin of the UG2 chromitite layer, Bushveld Complex. Journal of Petrology, 48, 495–510.

    Article  Google Scholar 

  • Naldrett, A. J., Wilson, A., Kinnaird, J., Yudovskya, M., & Chunnett, G. (2012). The origin of chromitites and related PGE mineralization in the Bushveld Complex: A new mineralogical and petrological constraints. Mineralium Deposita, 47, 209–232.

    Article  Google Scholar 

  • Nykänen, V. (2008). Radial basis functional links nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resource Research, 17, 29–48.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Artificial neural network for mineral potential mapping: a case study from Aravalli Province, Western India. Natural Resource Research, 12, 155–171.

    Article  Google Scholar 

  • Rohwer, R., Wynne-Jones, M., & Wysotzki, F., (1994). Neural networks, Machine Learning, Neural and Statistical Classification, London, p. 289.

  • SACS. (1980). Lithostratigraphy of South Africa, Part I. In Kent, L. E. (Ed.) Compiler. Geological survey of South Africa Hand Book 8, South African Committee for Stratigraphy (SACS), p. 690.

  • Scoon, R. N., & Teigler, B. (1994). Platinum group element mineralization in the Critical Zone of the western Bushveld Complex: I sulphide-poor chromitites below the UG2 reef. Economic Geology, 89, 1094–1121.

    Article  Google Scholar 

  • Sharp, M. R., & Snyman, J. A. (1980). A model of the emplacement of the eastern compartment of the Bushveld Complex. Tectonophysics, 65, 85–110.

    Article  Google Scholar 

  • Silver, P. G., Fouch, M. J., Gao, S. S., & Schimtz, M. (2004). Seismic anisotropy, mantle fabric, and the magmatic evolution of the Precambrian Southern Africa. South African Journal of Geology, 107, 45–58.

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (1999). A comparison of the weights of evidence method and probabilistic neural networks. Natural Resource Research, 8, 287–298.

    Article  Google Scholar 

  • Vermaak, C. F. (1976a). The Merensky reef: Thoughts on its environments and genesis. Economic Geology, 71, 1270–1298.

    Article  Google Scholar 

  • Vermaak, C. F. (1976b). The nickel pipes of Vlakfontein and vicinity, western Transvaal. Economic Geology, 71, 261–286.

    Article  Google Scholar 

  • Viljoen, M. J. (1999). The nature and origin the Merensky Reef of the western Bushveld Complex, based on geological facies and geophysical data. South African Journal of Geology, 102, 221–239.

    Google Scholar 

  • Voordouw, R., Gutzmer, J., & Beukes, N. J. (2009). Intrusive origin for the upper group (UG1, UG2) stratiform chromitite seams in the Dwars River area, Bushveld Complex, South Africa. Mineral Petrology, 97, 75–94.

    Article  Google Scholar 

  • Walraven, F., & Hattingh, E. (1993). Geochronology of the Nebo granite, Bushveld Complex. South African Journal of Geology, 96, 31–41.

    Google Scholar 

  • Wilson, M. G. C., & Anhaeusser, C. R. (1998). The mineral resource of South Africa. Council for Geoscience, Hand Book, 16, p. 740.

  • Wyborn, I. A. I., Heinrich, C. A., & Jaques, A. I. (1994). Australian proterozoic mineral systems: essential ingredients and mappable criteria. In: Hallenstein, P. C. (Ed.), Australian Mining Looks North—the challenges and choices, 5. Australian IMM Publication Series, pp. 109–111.

  • Yudovskaya, M. A., & Kinnaird, J. (2010). Chromitite in the Platreef (Bushveld Complex, South Africa): Occurrence and evolution of its chemical composition. Mineralium Deposita, 45, 369–391.

    Article  Google Scholar 

  • Zhao, J., Chen, S., Zuo, R., & Carranza, E. J. M. (2011). Mapping complexity of spatial distribution of faults using fractal and multifractal models: Vectoring towards exploration targets. Computer and Geosciences, 37, 1958–1966.

    Article  Google Scholar 

Download references

Acknowledgments

The comments of two anonymous reviewers and the Editor-in-Chief are greatly appreciated, which significantly improved the quality of this work. Thanks are due to the Council for Geoscience for providing access to the 1 km line spacing aeromagnetic data. This paper is based on the author’s presentation given at the 35th International Geological Conference (IGC35) held in Cape Town International Conversion Centre in South Africa from 27 August to 2 September 2017, and the author expresses gratitude to the University of Limpopo for travel grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abera Tessema.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessema, A. Mineral Systems Analysis and Artificial Neural Network Modeling of Chromite Prospectivity in the Western Limb of the Bushveld Complex, South Africa. Nat Resour Res 26, 465–488 (2017). https://doi.org/10.1007/s11053-017-9344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-017-9344-5

Keywords

Navigation