Skip to main content
Log in

Research on triazine-based nitrogen-doped porous carbon/Pebax mixed-matrix membranes for CO2 separation and its gas transport mechanism

  • Research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nitrogen-doped porous carbon (NPC) has a rich microporous structure and nitrogen-rich units, and its nitrogen-containing group can interact strongly with the PEO chain segment of Pebax, synergistically improving its CO2 adsorption ability and interface compatibility. This work prepared three types of triazine-based NPCs with mesoporous and high N-content and added NPCs to Pebax-2533 to prepare NPC/Pebax-2533 MMMs. The effects of N-type, N-content, and pore structure of NPCs on the gas separation performance of MMMs were studied. Constructing a continuous meso-microporous structure within the membrane and adding alkaline N-containing groups were beneficial for promoting rapid CO2 transport. Among the three NPCs, NPC-1/Pebax MMMs prepared using NPC-1 with the highest N-content (10.91%) and suitable pore structure exhibited the best gas separation performance. To investigate the gas transport mechanism of NPC in MMMs, NPC-1 was added to Pebax-2533 and Pebax-1657. The permeability of 3NPC-1/Pebax-2533 MMMs and 0.5NPC-1/Pebax-1657 MMMs reached 423 Barrer and 178 Barrer, with a CO2/N2 selectivity of 61 and 75.8, respectively, both higher than the Pebax-2533 and Pebax-1657. Adding NPC-1 to Pebax-2533 and Pebax-1657 increased the solubility and diffusivity coefficient of MMMs by 40 ~ 80%, and the gas separation performance did not rapidly decrease after long-term stability of 120 h (15%CO2/N2). Compared with NPC-1/Pebax-1657 MMMs, NPC-1/Pebax-2533 MMMs had higher CO2 permeability, mechanical properties, solubility, and diffusivity coefficient. The above results indicated that NPC was more suitable for Pebax-2533.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Experimental data

References

  1. B R H A, B L W, C D O C, et al (2022) The natural field freeze-thaw process leads to different performances of soil amendments towards Cd immobilization and enrichment. Sci Total Environ 831: 154880

  2. Li P, Zhong J, Ma W et al (2023) Diethylene glycolamine-assisted rapid synthesis of mechanically robust pyrogallol-based carbon monoliths for CO2 capture and separation. J CO2 Utilization 75: 102550

  3. Mohamed A, Yousef S, Makarevicius V et al (2023) GNs/MOF-based mixed-matrix membranes for gas separations [J]. Int J Hydrogen Energy 48(51):19596–19604

    Article  CAS  Google Scholar 

  4. Wang Y, Ma Z, Zhang X et al (2022) Mixed-matrix membranes consisting of Pebax and novel nitrogen-doped porous carbons for CO2 separation [J]. J Membr Sci 644:120182

    Article  CAS  Google Scholar 

  5. Park TJ, Reznick J, Peterson BL et al (2017) Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat [J]. Am Assoc Adv Sci 356(6335):307–311

    CAS  Google Scholar 

  6. Li H, Tuo L, Yang K et al (2016) Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed-matrix membranes: Interfacial toughening effect of ionic liquid. J Membr Sci 511:130–142

    Article  CAS  Google Scholar 

  7. Zhao H, Feng L, Ding X et al (2018) The nitrogen-doped porous carbons/PIM mixed-matrix membranes for CO2 separation. J Membr Sci 564:800–805

    Article  CAS  Google Scholar 

  8. Kosinov N, Gascon J, Kapteijn F et al (2015) Recent developments in zeolite membranes for gas separation. J Membrane ence 499:65–79

    Article  Google Scholar 

  9. Qian Q, Asinger PA, Lee MJ et al (2020) MOF-Based Membranes for Gas Separations. Chem Rev 120(16):8161–8266

    Article  CAS  PubMed  Google Scholar 

  10. Daglar H, Erucar I, Keskin S (2021) Recent advances in simulating gas permeation through MOF membranes. Mater Adv 2:5300–5311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. B F C A, B S D A, B Z W A et al (2020) Preparation of mixed-matrix composite membrane for hydrogen purification by incorporating ZIF-8 nanoparticles modified with tannic acid. Intl J Hydro Energy 45(12): 7444-7454

  12. Liu W, Jiang SD, Yan Y et al (2020) A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nat Commun 11(1):1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin RB, Xiang S, Zhou W et al (2019) Microporous Metal-Organic Framework Materials for Gas Separation. Chem 6(2):337–363

    Article  Google Scholar 

  14. Fu N, Wei H, Lin H et al (2017) Iron Nanoclusters as Template/Activator for the Synthesis of Nitrogen-Doped Porous Carbon and Its CO2 Adsorption Application. ACS Appl Mater Interfaces 9(11):9955–9963

    Article  CAS  PubMed  Google Scholar 

  15. Zeng S, Zhang X, Bai L et al (2017) Ionic-Liquid-Based CO2 Capture Systems: Structure. Interact Process Chem Rev 117(14):9625–9673

    CAS  PubMed  Google Scholar 

  16. Wang H, Zheng W, Yang X et al (2021) Pebax-based mixed-matrix membranes derived from microporous carbon nanospheres for permeable and selective CO2 separation. Sep Purif Technol 274:119015

    Article  CAS  Google Scholar 

  17. Liu N, Cheng J, Hu L et al. Boosting CO2 transport of poly (ethylene oxide) membranes by hollow Rubik-like “expressway” channels with anion-pillared hybrid ultramicroporous materials. Chem Eng J 427: 130845

  18. Dong L, Zhang C, Bai Y et al (2016) High-Performance PEBA2533-Functional MMT Mixed Matrix Membrane Containing High-Speed Facilitated Transport Channels for CO2/N2 Separation. ACS Sustain Chem Eng 4(6):3486–3496

    Article  CAS  Google Scholar 

  19. Liu N, Cheng J, Hou W et al (2021) Pebax-based mixed matrix membranes loaded with graphene oxide/core-shell ZIF-8@ZIF-67 nanocomposites improved CO2 permeability and selectivity. J Appl Polym Sci 138(23):1–16

    Article  Google Scholar 

  20. Dong L, Chen M, Wu X et al (2016) Multi-functional polydopamine coating: simultaneous enhancement of interfacial adhesion and CO2 separation performance of mixed matrix membranes. New J Chem 40(11):9148–9159

    Article  CAS  Google Scholar 

  21. Liu N, Cheng J, Hou W et al. Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS2 to boost CO2 permeability and selectivity in Pebax-based mixed matrix membranes. Separ Purif Technol 282: 120007

  22. Shao L, Li Y, Huang J et al (2018) Synthesis of Triazine-Based Porous Organic Polymers Derived N-Enriched Porous Carbons for CO2 Capture. Ind Eng Chem Res 57(8):2856–2865

    Article  CAS  Google Scholar 

  23. Zhang X, Rong M, Qin P et al (2022) PEO-based CO2 philic mixed matrix membranes compromising N-rich ultramicroporous polyamines for superior CO2 capture. J Membr Sci 644:120111

    Article  CAS  Google Scholar 

  24. Shao L, Wang S, Liu M et al (2018) Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Chem Eng J 339:509–518

    Article  CAS  Google Scholar 

  25. Zhang, Xinru, Zhang, et al (2018) Mixed-matrix membranes based on Zn/Ni-ZIF-8-PEBA for high-performance CO2 separation. J Membr Sci 560: 38-46

  26. Dong L, Sun Y, Zhang C et al (2015) Efficient CO2 capture by metallo-supramolecular polymers as fillers to fabricate a polymeric blend membrane. RSC Adv 5:67658–67661

    Article  CAS  Google Scholar 

  27. Shao L, Liu M, Sang Y et al (2019) One-pot synthesis of melamine-based porous polyamides for CO2 capture. Microporous Mesoporous Mater 285:1387–1811

    Article  Google Scholar 

  28. Lee S, Park, et al (2018) Direct molecular interaction of CO2 with KTFSI dissolved in Pebax 2533 and their use in facilitated CO2 transport membranes. J Membr Sci 548:358–362

    Article  CAS  Google Scholar 

  29. Xin Q, Liu T, Li Z et al (2015) Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal–organic framework for gas separation. J Membr Sci 488:67–78

    Article  CAS  Google Scholar 

  30. Dong L, Chen M, Li J et al (2016) Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes. J Membr Sci 520:801–811

    Article  CAS  Google Scholar 

  31. Waheed N, Mushtaq A, Tabassum S et al (2016) Mixed Matrix Membranes Based on Polysulfone and Rice Husk Extracted Silica for CO2 Separation. Sep Purif Technol 170:122–129

    Article  CAS  Google Scholar 

  32. Zhang C, Wu Y, Zhang Y et al (2016) Poly(ether-b-amide)/ethylene glycol monophenyl ether gel membrane with superior CO2/N2 separation performance fabricated by thermally induced phase separation method. J Membr Sci 508:136–145

    Article  CAS  Google Scholar 

  33. Tae-Hyun, Bae, Jong et al (2010) A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal-Organic Framework Crystals. Angewandte Chemie International Edition 49(51): 9863-9866

  34. Dai Y, Ruan X, Yan Z et al (2016) Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Sep Purif Technol 166:171–180

    Article  CAS  Google Scholar 

  35. Zhang H, Guo R, Hou J et al (2016) Mixed Matrix Membranes Containing Carbon Nanotubes Composite with Hydrogel for Efficient CO2 Separation. ACS Appl Mater Interfaces 8:29044–29051

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Yu S, Li K et al (2020) Enhanced gas separation performance of Pebax mixed matrix membranes by incorporating ZIF-8 in situ inserted by multiwalled carbon nanotubes. Sep Purif Technol 248:117080

    Article  CAS  Google Scholar 

  37. Y Zhang M Z, X Li, et al (2023) Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure. J Industr Eng Chem 125: 200-210

Download references

Acknowledgements

Thanks for the help of the Analysis and Testing Center, International Joint Lab of Jiangsu Education Department, and NERC Biomass of Changzhou University.

Funding

This work was supported by the National Key Research and Development Program of China (2022YFB3805003), the Changzhou Sci&Tech Program (CZ20220033 and CZ20230022), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_3026), and the National Natural Science Foundation of China (Grant No. 22108015). This work was also partially supported by the Kobe University Strategic International Collaborative Research Grant (Type B Fostering Joint Research).

Author information

Authors and Affiliations

Authors

Contributions

Peilin Li: Conceptualization, Methodology, Investigation, Experiment, Writing-Original Draft. Wenzhong Ma: Methodology, Writing Review & Editing. Jing Zhong: Conceptualization, Funding acquisition, Resources, Supervision, Writing Review & Editing. Yang Pan: Investigation, Methodology. Xiuxiu Ren: Investigation, Methodology. Meng Guo: Resources, Supervision. Nanhua Wu: Investigation, Methodology. Hideto Matsuyama: Writing Review & Editing.

Corresponding authors

Correspondence to Wenzhong Ma or Jing Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12.2 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Ma, W., Zhong, J. et al. Research on triazine-based nitrogen-doped porous carbon/Pebax mixed-matrix membranes for CO2 separation and its gas transport mechanism. J Nanopart Res 26, 108 (2024). https://doi.org/10.1007/s11051-024-06015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06015-1

Keywords

Navigation