Skip to main content
Log in

A holistic review of recent advances in nano-based drug delivery systems for the treatment of triple-negative breast cancer (TNBC)

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Over the past couple of decades, the incidence of breast cancer (BC) has significantly increased among females in comparison to other cancer types. In medicinal terminology, the susceptibility to BC is mainly centered around three hormonal receptors: estrogen (ER), progesterone (PR), and human epidermal growth receptor (HER2). Notably, estrogen- dependent breast cancer has a considerable female demographic, making it treatable with hormonal drugs and less intensive immunotherapy. Conversely, the narrative delves into the ominous type of cancer known as triple-negative breast cancer (TNBC). The orientation of all three receptors falls in a negative direction, which is ineffective for treatments that rely on hormonal or antagonist medicaments. Therefore, the only option available to tackle this type of cancer is chemotherapy, which causes toxicity within the body, is highly expensive, and is non-targeted. To counter this challenge, researchers have pioneered nano-based drug delivery systems (NDDS) owing to their innumerable merits and scientific development. NDDS mainly involves polymeric nanoparticles, liposomes, and dendrimers. This review comprehensively details the advancements in nanoinduced targeted drug delivery systems, with a focus on surface modification techniques for active targeting, enhanced drug release, and improved pharmacokinetics. Critical analysis extends to preclinical and clinical studies, revealing the potential of nano-drug delivery systems in TNBC to surpass traditional therapies, with promising heightened efficacy and reduced side effects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The paper and supplementary material contain the original contributions that were presented in the study. The appropriate author can be contacted for more information.

Abbreviations

TNBC :

Triple-negative Breast Cancer

NDDS :

Nano-based drug delivery systems

LAR :

Luminal Androgen Receptor

CSC S :

Cancer Stem Cells

DBD :

DNA-binding domain

EREs :

oestrogen response elements

BRCA1 :

Breast Cancer gene 1

DFS :

Disease-Free Survival

PCR :

Polymerase Chain Reaction

MRI :

Magnetic Resonance Imaging

IHC :

Immunohistochemistry

BCT :

Breast conservation therapy

DDR :

DNA Damage Response

HRD :

Homologous recombination deficiency

PARA :

Poly(ADP-ribose) Polymerase

ORR :

Overall response rate

LOH :

Loss of heterozygosity

CXCR4 :

Chemokine (C-X-C motif) Receptor 4

siRNA :

Small interfering RNA

RSK2 :

Ribosomal S6 Kinase 2

Gpx1 :

Glutathione Peroxidase-1

miRNA :

MicroRNA

PD-1 :

Programmed Cell Death Protein 1

PD-L1 :

Programmed Death-Ligand 1

TILs :

Tumor infiltrating lymphocytes

CBS :

Conservative breast surgery

FDA :

Food and Drug Administration

PEG :

Polyethylene Glycol

SPION :

Superparamagnetic Nano particulates

SLNs :

Solid lipid nanomaterials

RME :

Receptor-mediated endocytosis

PLA :

Poly (lactic acid)

TGIs :

Tumor growth inhibition rates

BMDM :

Bone marrow-derived macrophages

TNF-α :

Tumor Necrosis Factor-alpha

SST :

Synthetic somatostatin analogs

SST :

Stands for somatostatin

SSTR2 :

Stands for Somatostatin Receptor Type 2

AF :

Atrial Fibrillation

NMOFs :

Nanostructured metal-organic frameworks

IRMOF-3 :

Iso-reticular metal-organic framework-3

CAM :

Complementary and Alternative Medicine

ROS :

Reactive oxygen species

MSN :

Mesoporous silica nanoparticles

HUVEC :

Human umbilical vein endothelial cells

FITC :

Fluorescein Isothiocyanate

XFM :

X-ray fluorescence microscopy

LBL :

Layer by layer

BTNPs :

Barium titanate nanoparticles

CLSM :

Confocal laser scanning microscopy

EMT :

Epithelial-mesenchymal transition

NLCs :

Nanostructured lipid carriers

LPH-NPs :

Lipid-polymer hybrid nanoparticles

References

  1. Martin C, Aibani N, Callan JF, Callan B (2016) Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs. Ther. Deliv 7(1):15–31. https://doi.org/10.4155/tde.15.84

    Article  CAS  PubMed  Google Scholar 

  2. Guan L, Rizzello L, Battaglia G (2015) Polymersomes and their applications in cancer delivery and therapy. Nanomedicine 10(17):2757–2780. https://doi.org/10.2217/nnm.15.110

    Article  CAS  PubMed  Google Scholar 

  3. Karandish F et al (2018) Nucleus-Targeted, Echogenic Polymersomes for Delivering a Cancer Stemness Inhibitor to Pancreatic Cancer Cells. Biomacromolecules 19(10):4122–4132. https://doi.org/10.1021/acs.biomac.8b01133

    Article  CAS  PubMed  Google Scholar 

  4. Golombek SK et al (2018) Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 130:17–38. https://doi.org/10.1016/j.addr.2018.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacDonald I, Nixon NA, Khan OF (2022) Triple-Negative Breast Cancer: A Review of Current Curative Intent Therapies. Curr Oncol 29(7):4768–4778. https://doi.org/10.3390/curroncol29070378

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kesharwani P, Sheikh A, Abourehab MAS, Salve R, Gajbhiye V (2023) A combinatorial delivery of survivin targeted siRNA using cancer selective nanoparticles for triple negative breast cancer therapy. J Drug Deliv Sci Technol 80:104164. https://doi.org/10.1016/j.jddst.2023.104164

    Article  CAS  Google Scholar 

  7. Kulkarni P, Haldar MK, You S, Choi Y, Mallik S (2016) Hypoxia-Responsive Polymersomes for Drug Delivery to Hypoxic Pancreatic Cancer Cells. Biomacromolecules 17(8):2507–2513. https://doi.org/10.1021/acs.biomac.6b00350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Confeld MI et al (2020) Targeting the Tumor Core: Hypoxia-Responsive Nanoparticles for the Delivery of Chemotherapy to Pancreatic Tumors. Mol Pharm 17(8):2849–2863. https://doi.org/10.1021/acs.molpharmaceut.0c00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng ZJ, Morton SW, Ben-Akiva E, Dreaden EC, Shopsowitz KE, Hammond PT (2013) Layer-by-Layer Nanoparticles for Systemic Codelivery of an Anticancer Drug and siRNA for Potential Triple-Negative Breast Cancer Treatment. ACS Nano 7(11):9571–9584. https://doi.org/10.1021/nn4047925

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y et al (2017) Tumor-Targeting Micelles Based on Linear-Dendritic PEG–PTX 8 Conjugate for Triple Negative Breast Cancer Therapy. Mol Pharm 14(10):3409–3421. https://doi.org/10.1021/acs.molpharmaceut.7b00430

    Article  CAS  PubMed  Google Scholar 

  11. Brinkman AM et al (2016) Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer. Biomaterials 101:20–31. https://doi.org/10.1016/j.biomaterials.2016.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Torres-Pérez SA, del P Ramos-Godínez M, Ramón-Gallegos E (2019) Effect of methotrexate conjugated PAMAM dendrimers on the viability of breast cancer cells. p 050014. https://doi.org/10.1063/1.5095929

  13. Wu X, Han Z, Schur RM, Lu Z-R (2016) Targeted Mesoporous Silica Nanoparticles Delivering Arsenic Trioxide with Environment Sensitive Drug Release for Effective Treatment of Triple Negative Breast Cancer. ACS Biomater Sci Eng 2(4):501–507. https://doi.org/10.1021/acsbiomaterials.5b00398

    Article  CAS  PubMed  Google Scholar 

  14. Lü L et al (2017) MicroRNAs in the prognosis of triple-negative breast cancer. Medicine (Baltimore) 96(22):e7085. https://doi.org/10.1097/MD.0000000000007085

    Article  CAS  PubMed  Google Scholar 

  15. Zhu H, Dai M, Chen X, Chen X, Qin S, Dai S (2017) Integrated analysis of the potential roles of miRNA-mRNA networks in triple negative breast cancer. Mol Med Rep 16(2):1139–1146. https://doi.org/10.3892/mmr.2017.6750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rastogi P et al (2008) Preoperative Chemotherapy: Updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26(5):778–785. https://doi.org/10.1200/JCO.2007.15.0235

    Article  PubMed  Google Scholar 

  17. Zhao L, Gu C, Gan Y, Shao L, Chen H, Zhu H (2020) Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J Control Release 318:1–15. https://doi.org/10.1016/j.jconrel.2019.12.005

    Article  CAS  PubMed  Google Scholar 

  18. Guo P, You J-O, Yang J, Jia D, Moses MA, Auguste DT (2014) Inhibiting Metastatic Breast Cancer Cell Migration via the Synergy of Targeted, pH-triggered siRNA Delivery and Chemokine Axis Blockade. Mol Pharm. 11(3):755–765. https://doi.org/10.1021/mp4004699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee E et al (2020) Glutathione peroxidase-1 regulates adhesion and metastasis of triple-negative breast cancer cells via FAK signaling. Redox Biol 29:101391. https://doi.org/10.1016/j.redox.2019.101391

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y et al (2020) Non-SMC Condensin I Complex Subunit D2 Is a Prognostic Factor in Triple-Negative Breast Cancer for the Ability to Promote Cell Cycle and Enhance Invasion. Am J Pathol. 190(1):37–47. https://doi.org/10.1016/j.ajpath.2019.09.014

    Article  CAS  PubMed  Google Scholar 

  21. Medina MA et al (2020) Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. Int J Environ Res Public Health 17(6):2078. https://doi.org/10.3390/ijerph17062078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dana H et al (2017) Molecular Mechanisms and Biological Functions of siRNA. IJBS 13

  23. Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1(4):533–557. https://doi.org/10.1002/wdev.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huebner RJ, Ewald AJ (2014) Cellular foundations of mammary tubulogenesis. Semin Cell Dev Biol 31:124–131. https://doi.org/10.1016/j.semcdb.2014.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hunter T (2000) Signaling—2000 and Beyond. Cell 100(1):113–127. https://doi.org/10.1016/S0092-8674(00)81688-8

    Article  CAS  PubMed  Google Scholar 

  26. Hunter T (2007) The Age of Crosstalk: Phosphorylation, Ubiquitination, and Beyond. Mol Cell 28(5):730–738. https://doi.org/10.1016/j.molcel.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  27. Sever R, Brugge JS (2015) Signal Transduction in Cancer. Cold Spring Harb Perspect Med 5(4):a006098–a006098. https://doi.org/10.1101/cshperspect.a006098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar V, Green S, Stack G, Berry M, Jin J-R, Chambon P (1987) Functional domains of the human estrogen receptor. Cell 51(6):941–951. https://doi.org/10.1016/0092-8674(87)90581-2

    Article  CAS  PubMed  Google Scholar 

  29. Kent Osborne C, Schiff R, Fuqua SAW, Shou J (2001). Estrogen Receptor: Current Understanding of Its Activation and Modulation. Clin Cancer Res 7

  30. Renoir J-M, Marsaud V, Lazennec G (2013) Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol 85(4):449–465. https://doi.org/10.1016/j.bcp.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  31. Cheskis BJ, Greger JG, Nagpal S, Freedman LP (2007) Signaling by estrogens. J Cell Physiol 213(3):610–617. https://doi.org/10.1002/jcp.21253

    Article  CAS  PubMed  Google Scholar 

  32. Björnström L, Sjöberg M (2005) Mechanisms of Estrogen Receptor Signaling: Convergence of Genomic and Nongenomic Actions on Target Genes. Mol Endocrinol 19(4):833–842. https://doi.org/10.1210/me.2004-0486

    Article  CAS  PubMed  Google Scholar 

  33. Saha Roy S, Vadlamudi RK (2012) Role of Estrogen Receptor Signaling in Breast Cancer Metastasis. Int J Breast Cancer 2012:1–8. https://doi.org/10.1155/2012/654698

    Article  CAS  Google Scholar 

  34. Klinge CM (2000) Estrogen receptor interaction with co-activators and co-repressors☆. Steroids 65(5):227–251. https://doi.org/10.1016/S0039-128X(99)00107-5

    Article  CAS  PubMed  Google Scholar 

  35. Marino M, Galluzzo P, Ascenzi P (2006) Estrogen Signaling Multiple Pathways to Impact Gene Transcription. Curr Genomics 7(8):497–508. https://doi.org/10.2174/138920206779315737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fan S et al (1999) BRCA1 Inhibition of Estrogen Receptor Signaling in Transfected Cells. Science (80-) 284(5418):1354–1356 https://doi.org/10.1126/science.284.5418.1354.

  37. Nadji M, Gomez-Fernandez C, Ganjei-Azar P, Morales AR (2005) Immunohistochemistry of Estrogen and Progesterone Receptors Reconsidered. Am J Clin Pathol 123(1):21–27. https://doi.org/10.1309/4WV79N2GHJ3X1841

    Article  PubMed  Google Scholar 

  38. Medina MA, Oza G, Sharma A, Arriaga LG, Hernández Hernández JM, Rotello VM, Ramirez JT (2020) Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. https://doi.org/10.3390/ijerph17062078.

  39. Shokooh MK, Emami F, Jeong J-H, Yook S Bio-Inspired and Smart Nanoparticles for Triple Negative Breast Cancer Microenvironment. Pharmaceutics 13:287. https://doi.org/10.3390/pharmaceutics13020287

  40. Silva-Cázares MB, Saavedra-Leos MZ, Jordan-Alejandre E, Nuñez-Olvera S, Cómpean-Martínez I, López-Camarillo C (2020) Lipid-based nanoparticles for the therapeutic delivery of non-coding RNAs in breast cancer (Review). Oncol Rep 44:2353-2363 https://doi.org/10.3892/or.2020.7791

  41. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25. https://doi.org/10.1016/j.addr.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  42. Miller-Kleinhenz JM, Bozeman EN, Yang L (2015) Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 7(6):797–816. https://doi.org/10.1002/wnan.1343

    Article  CAS  PubMed  Google Scholar 

  43. Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal Anti-inflammatory Drugs as Anticancer Agents: Mechanistic, Pharmacologic, and Clinical Issues. JNCI J Natl Cancer Inst 94(4):252–266. https://doi.org/10.1093/jnci/94.4.252

    Article  CAS  PubMed  Google Scholar 

  44. Ramirez LY, Huestis SE, Yap TY, Zyzanski S, Drotar D, Kodish E (2009) Potential chemotherapy side effects: What do oncologists tell parents? Pediatr Blood Cancer 52(4):497–502. https://doi.org/10.1002/pbc.21835

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bagnyukova TV, Serebriiskii IG, Zhou Y, Hopper-Borge EA, Golemis EA, Astsaturov I (2010) Chemotherapy and signaling. Cancer Biol Ther 10(9):839–853. https://doi.org/10.4161/cbt.10.9.13738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu D et al (2018) Oxygen-generating Hybrid Polymeric Nanoparticles with Encapsulated Doxorubicin and Chlorin e6 for Trimodal Imaging-Guided Combined Chemo-Photodynamic Therapy. Theranostics 8(6):1558–1574. https://doi.org/10.7150/thno.22989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan J-D et al (2018) pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer. Artif Cells, Nanomedicine, Biotechnol 46(sup1):302–313. https://doi.org/10.1080/21691401.2017.1423495

    Article  CAS  Google Scholar 

  48. Khanna V, Kalscheuer S, Kirtane A, Zhang W, Panyam J (2019) Perlecan-targeted nanoparticles for drug delivery to triple-negative breast cancer. Futur Drug Discov 1(1) https://doi.org/10.4155/fdd-2019-0005

  49. Zhang R et al (2019) Immune Checkpoint Blockade Mediated by a Small-Molecule Nanoinhibitor Targeting the PD-1/PD-L1 Pathway Synergizes with Photodynamic Therapy to Elicit Antitumor Immunity and Antimetastatic Effects on Breast Cancer. Small 15(49):1903881. https://doi.org/10.1002/smll.201903881

    Article  CAS  Google Scholar 

  50. Wang S et al (2017) Co-delivery of gambogic acid and TRAIL plasmid by hyaluronic acid grafted PEI-PLGA nanoparticles for the treatment of triple negative breast cancer. Drug Deliv 24(1):1791–1800. https://doi.org/10.1080/10717544.2017.1406558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Duan X, Chan C, Guo N, Han W, Weichselbaum RR, Lin W (2016) Photodynamic Therapy Mediated by Nontoxic Core-Shell Nanoparticles Synergizes with Immune Checkpoint Blockade To Elicit Antitumor Immunity and Antimetastatic Effect on Breast Cancer. J Am Chem Soc 138(51):16686–16695. https://doi.org/10.1021/jacs.6b09538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martin JD, Cabral H, Stylianopoulos T, Jain RK (2020) Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol 17(4):251–266. https://doi.org/10.1038/s41571-019-0308-z

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goldberg MS (2019) Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 19(10):587–602. https://doi.org/10.1038/s41568-019-0186-9

    Article  CAS  PubMed  Google Scholar 

  54. Schmid P et al (2018) Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N Engl J Med 379(22):2108–2121. https://doi.org/10.1056/NEJMoa1809615

    Article  CAS  PubMed  Google Scholar 

  55. Thambi T et al (2014) Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials 35(5):1735–1743. https://doi.org/10.1016/j.biomaterials.2013.11.022

    Article  CAS  PubMed  Google Scholar 

  56. Esfandiari N, Arzanani MK, Soleimani M, Kohi-Habibi M, Svendsen WE (2016) A new application of plant virus nanoparticles as drug delivery in breast cancer. Tumor Biol 37(1):1229–1236. https://doi.org/10.1007/s13277-015-3867-3

    Article  CAS  Google Scholar 

  57. Le DHT, Lee KL, Shukla S, Commandeur U, Steinmetz NF (2017) Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale 9(6):2348–2357. https://doi.org/10.1039/C6NR09099K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wahajuddin and Arora (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 3445. https://doi.org/10.2147/IJN.S30320

  59. Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496. https://doi.org/10.1016/j.jmmm.2005.01.064

    Article  CAS  Google Scholar 

  60. Trivino A, Gumireddy A, Chauhan H (2019) Drug-Lipid-Surfactant Miscibility for the Development of Solid Lipid Nanoparticles. AAPS PharmSciTech 20(2):46. https://doi.org/10.1208/s12249-018-1229-3

    Article  CAS  PubMed  Google Scholar 

  61. Meng H et al (2013) Codelivery of an Optimal Drug/siRNA Combination Using Mesoporous Silica Nanoparticles To Overcome Drug Resistance in Breast Cancer in Vitro and in Vivo. ACS Nano 7(2):994–1005. https://doi.org/10.1021/nn3044066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yong K-T et al (2007) Quantum Rod Bioconjugates as Targeted Probes for Confocal and Two-Photon Fluorescence Imaging of Cancer Cells. Nano Lett 7(3):761–765. https://doi.org/10.1021/nl063031m

    Article  CAS  PubMed  Google Scholar 

  63. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Lett 5(4):709–711. https://doi.org/10.1021/nl050127s

    Article  CAS  PubMed  Google Scholar 

  64. Hirsch LR et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100(23):13549–13554. https://doi.org/10.1073/pnas.2232479100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pan B et al (2007) Dendrimer-Modified Magnetic Nanoparticles Enhance Efficiency of Gene Delivery System. Cancer Res. 67(17):8156–8163. https://doi.org/10.1158/0008-5472.CAN-06-4762

    Article  CAS  PubMed  Google Scholar 

  66. Cloninger MJ (2002) Biological applications of dendrimers. Curr Opin Chem Biol 6(6):742–748. https://doi.org/10.1016/S1367-5931(02)00400-3

    Article  CAS  PubMed  Google Scholar 

  67. Toh T-B et al (2014) Nanodiamond–Mitoxantrone Complexes Enhance Drug Retention in Chemoresistant Breast Cancer Cells. Mol Pharm 11(8):2683–2691. https://doi.org/10.1021/mp5001108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang P et al (2016) Better pathologic complete response and relapse-free survival after carboplatin plus paclitaxel compared with epirubicin plus paclitaxel as neoadjuvant chemotherapy for locally advanced triple-negative breast cancer: a randomized phase 2 trial. Oncotarget 7(37):60647–60656 https://doi.org/10.18632/oncotarget.10607.

  69. Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T (2018) Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 8(5):1483–1507. https://doi.org/10.1007/s13346-018-0551-3

    Article  PubMed  PubMed Central  Google Scholar 

  70. Piccart-Gebhart MJ et al (2005) Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer. N Engl J Med 353(16):1659–1672. https://doi.org/10.1056/NEJMoa052306

    Article  CAS  PubMed  Google Scholar 

  71. Waks AG, Winer EP (2019) Breast Cancer Treatment. JAMA 321(3):288. https://doi.org/10.1001/jama.2018.19323

    Article  CAS  PubMed  Google Scholar 

  72. Lim E, Palmieri C, Tilley WD (2016) Renewed interest in the progesterone receptor in breast cancer. Br J Cancer 115(8):909–911. https://doi.org/10.1038/bjc.2016.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Joshi H, Press MF (2018) Molecular Oncology of Breast Cancer. In: The Breast, Elsevier, pp. 282-307.e5. https://doi.org/10.1016/B978-0-323-35955-9.00022-2

  74. Al-Warhi T, Sabt A, Elkaeed EB, Eldehna WM (2020) Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg Chem 103:104163. https://doi.org/10.1016/j.bioorg.2020.104163

    Article  CAS  PubMed  Google Scholar 

  75. Bae YH, Park K (2011) Targeted drug delivery to tumors: Myths, reality and possibility. J Control Release 153(3):198–205. https://doi.org/10.1016/j.jconrel.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O (2008) Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin Pharmacol Ther 83(5):761–769. https://doi.org/10.1038/sj.clpt.6100400

    Article  CAS  PubMed  Google Scholar 

  77. Hirsjarvi S, Passirani C, Benoit J-P (2011) Passive and Active Tumour Targeting with Nanocarriers. Curr Drug Discov Technol 8(3):188–196. https://doi.org/10.2174/157016311796798991

    Article  CAS  PubMed  Google Scholar 

  78. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol

  79. Mostafavi Yazdi SJ, Cho S, Lee J-H (2021) Analysis and optimization of six types of two-coil inductive for the human implantable wireless electrocardiogram sensor. In: Optical Fibers and Sensors for Medical Diagnostics. Treatment and Environ Appl XXI, p 12. https://doi.org/10.1117/12.2582372

  80. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13(11):674–690. https://doi.org/10.1038/nrclinonc.2016.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bosch A, Eroles P, Zaragoza R, Viña JR, Lluch A (2010) Triple-negative breast cancer: Molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev 36(3):206–215. https://doi.org/10.1016/j.ctrv.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  82. Murugan C et al (2016) Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Sci Rep 6(1):34053. https://doi.org/10.1038/srep34053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pawar A, Prabhu P (2019) Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed Pharmacother 110:319–341. https://doi.org/10.1016/j.biopha.2018.11.122

    Article  CAS  PubMed  Google Scholar 

  84. Abdulkarim BS, Cuartero J, Hanson J, Deschênes J, Lesniak D, Sabri S (2011) Increased Risk of Locoregional Recurrence for Women With T1–2N0 Triple-Negative Breast Cancer Treated With Modified Radical Mastectomy Without Adjuvant Radiation Therapy Compared With Breast-Conserving Therapy. J Clin Oncol. 29(21):2852–2858. https://doi.org/10.1200/JCO.2010.33.4714

    Article  PubMed  PubMed Central  Google Scholar 

  85. von Minckwitz G et al (2010) Abstract S4-6: Neoadjuvant Chemotherapy with or without Bevacizumab: Primary Efficacy Endpoint Analysis of the GEPARQUINTO Study (GBG 44). Cancer Res 70(24_Supplement): S4-6 https://doi.org/10.1158/0008-5472.SABCS10-S4-6

  86. Gerber B et al (2013) Neoadjuvant bevacizumab and anthracycline–taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44). Ann Oncol 24(12):2978–2984. https://doi.org/10.1093/annonc/mdt361

    Article  CAS  PubMed  Google Scholar 

  87. Gennari A et al (2008) HER2 Status and Efficacy of Adjuvant Anthracyclines in Early Breast Cancer: A Pooled Analysis of Randomized Trials. JNCI J Natl Cancer Inst 100(1):14–20. https://doi.org/10.1093/jnci/djm252

    Article  CAS  PubMed  Google Scholar 

  88. Slamon D, Mackey J, Robert N, Crown J, Martin M, Eiremann W et al (2007) Role of anthracycline-based therapy in the adjuvant treatment of breast cancer: efficacy analyses determined by molecular subtypes of the disease. Springer

  89. von Minckwitz G et al (2012) Definition and Impact of Pathologic Complete Response on Prognosis After Neoadjuvant Chemotherapy in Various Intrinsic Breast Cancer Subtypes. J Clin Oncol 30(15):1796–1804. https://doi.org/10.1200/JCO.2011.38.8595

    Article  Google Scholar 

  90. Cortazar P et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938):164–172. https://doi.org/10.1016/S0140-6736(13)62422-8

    Article  PubMed  Google Scholar 

  91. Asselain B et al (2018) Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol 19(1):27–39. https://doi.org/10.1016/S1470-2045(17)30777-5

    Article  Google Scholar 

  92. Maughan KL, Lutterbie MA, Ham PS (2010) Treatment of breast cancer. Natl Libr Med

  93. Moo T-A, Sanford R, Dang C, Morrow M (2018) Overview of Breast Cancer Therapy. PET Clin 13(3):339–354. https://doi.org/10.1016/j.cpet.2018.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fosu-Mensah N, Peris MS, Weeks HP, Cai J, Westwell AD (2015) Advances in small-molecule drug discovery for triple-negative breast cancer. Future Med Chem 7(15):2019–2039. https://doi.org/10.4155/fmc.15.129

    Article  CAS  PubMed  Google Scholar 

  95. Kalimutho M, Parsons K, Mittal D, López JA, Srihari S, Khanna KK (2015) Targeted Therapies for Triple-Negative Breast Cancer: Combating a Stubborn Disease. Trends Pharmacol Sci 36(12):822–846. https://doi.org/10.1016/j.tips.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  96. Vaz-Luis I et al (2014) Outcomes by Tumor Subtype and Treatment Pattern in Women With Small, Node-Negative Breast Cancer: A Multi-Institutional Study. J Clin Oncol 32(20):2142–2150. https://doi.org/10.1200/JCO.2013.53.1608

    Article  PubMed  PubMed Central  Google Scholar 

  97. Metzger-Filho O et al (2012) Dissecting the Heterogeneity of Triple-Negative Breast Cancer. J Clin Oncol 30(15):1879–1887. https://doi.org/10.1200/JCO.2011.38.2010

    Article  CAS  PubMed  Google Scholar 

  98. Lehmann BD et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767. https://doi.org/10.1172/JCI45014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol. 8(3):235–244. https://doi.org/10.1016/S1470-2045(07)70074-8

    Article  PubMed  Google Scholar 

  100. Mitra S (2017) MicroRNA Therapeutics in Triple Negative Breast Cancer. Arch Pathol Clin Res 1(1):009–017. https://doi.org/10.29328/journal.hjpcr.1001003

    Article  Google Scholar 

  101. Pareja F, Geyer F.C, Marchiò C, Burke KA, Weigelt B, Reis-Filho JS (2016) Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. npj Breast Cancer 2(1):16036 https://doi.org/10.1038/npjbcancer.2016.36

  102. Repetto L et al (1996) Tamoxifen and interferon-beta for the treatment of metastatic breast cancer. Breast Cancer Res Treat 39(2):235–238. https://doi.org/10.1007/BF01806190

    Article  CAS  PubMed  Google Scholar 

  103. Kimmick G, Ratain MJ, Berry D, Woolf S, Norton L, Muss HB (2004) Subcutaneously Administered Recombinant Human Interleukin-2 and Interferon Alfa-2a for Advanced Breast Cancer: A Phase II study of the Cancer and Leukemia Group B (CALGB 9041). Invest New Drugs 22(1):83–89. https://doi.org/10.1023/B:DRUG.0000006178.32718.22

    Article  CAS  PubMed  Google Scholar 

  104. Loi S et al (2013) Prognostic and Predictive Value of Tumor-Infiltrating Lymphocytes in a Phase III Randomized Adjuvant Breast Cancer Trial in Node-Positive Breast Cancer Comparing the Addition of Docetaxel to Doxorubicin With Doxorubicin-Based Chemotherapy: BIG 02–98. J Clin Oncol 31(7):860–867. https://doi.org/10.1200/JCO.2011.41.0902

    Article  CAS  PubMed  Google Scholar 

  105. Murakami W et al (2020) Correlation between 18F-FDG uptake on PET/MRI and the level of tumor-infiltrating lymphocytes (TILs) in triple-negative and HER2-positive breast cancer. Eur J Radiol 123:108773. https://doi.org/10.1016/j.ejrad.2019.108773

    Article  PubMed  Google Scholar 

  106. Rodenhiser DI, Andrews JD, Vandenberg TA, Chambers AF (2011) Gene signatures of breast cancer progression and metastasis. Breast Cancer Res 13(1):201. https://doi.org/10.1186/bcr2791

    Article  PubMed  PubMed Central  Google Scholar 

  107. Loibl S et al (2018) Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol 19(4):497–509. https://doi.org/10.1016/S1470-2045(18)30111-6

    Article  CAS  PubMed  Google Scholar 

  108. Chaudhary LN (2020) Early stage triple negative breast cancer: Management and future directions. Semin Oncol 47(4):201–208. https://doi.org/10.1053/j.seminoncol.2020.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. (2016) Adaptive Randomization of Neratinib in Early Breast Cancer. N Engl J Med 375(16):1591–1594. https://doi.org/10.1056/NEJMc1609993

  110. Rugo HS et al (2016) Adaptive Randomization of Veliparib-Carboplatin Treatment in Breast Cancer. N Engl J Med 375(1):23–34. https://doi.org/10.1056/NEJMoa1513749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Howard FM, Pearson AT, Nanda R (2022) Clinical trials of immunotherapy in triple-negative breast cancer. Breast Cancer Res Treat 195(1):1–15. https://doi.org/10.1007/s10549-022-06665-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Emens LA et al (2019) Long-term Clinical Outcomes and Biomarker Analyses of Atezolizumab Therapy for Patients With Metastatic Triple-Negative Breast Cancer. JAMA Oncol 5(1):74. https://doi.org/10.1001/jamaoncol.2018.4224

    Article  PubMed  Google Scholar 

  113. Nanda R et al (2016) Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study. J Clin Oncol 34(21):2460–2467. https://doi.org/10.1200/JCO.2015.64.8931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Adams S et al (2019) Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol 30(3):397–404. https://doi.org/10.1093/annonc/mdy517

    Article  CAS  PubMed  Google Scholar 

  115. Adams S et al (2019) Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann Oncol 30(3):405–411. https://doi.org/10.1093/annonc/mdy518

    Article  CAS  PubMed  Google Scholar 

  116. Dirix LY et al (2018) Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat 167(3):671–686. https://doi.org/10.1007/s10549-017-4537-5

    Article  CAS  PubMed  Google Scholar 

  117. Jovanović B et al (2017) A Randomized Phase II Neoadjuvant Study of Cisplatin, Paclitaxel With or Without Everolimus in Patients with Stage II/III Triple-Negative Breast Cancer (TNBC): Responses and Long-term Outcome Correlated with Increased Frequency of DNA Damage Response Gene Mutations, TNBC Subtype, AR Status, and Ki67. Clin Cancer Res 23(15):4035–4045. https://doi.org/10.1158/1078-0432.CCR-16-3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hahnen E et al (2017) Germline Mutation Status, Pathological Complete Response, and Disease-Free Survival in Triple-Negative Breast Cancer. JAMA Oncol 3(10):1378. https://doi.org/10.1001/jamaoncol.2017.1007

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sikov WM et al (2015) Impact of the Addition of Carboplatin and/or Bevacizumab to Neoadjuvant Once-per-Week Paclitaxel Followed by Dose-Dense Doxorubicin and Cyclophosphamide on Pathologic Complete Response Rates in Stage II to III Triple-Negative Breast Cancer: CALGB 40603 (Alliance). J Clin Oncol 33(1):13–21. https://doi.org/10.1200/JCO.2014.57.0572

    Article  CAS  PubMed  Google Scholar 

  120. Tokuda EY, Leal MF, Cardoso Smith MA et al (2020) Understanding and Overcoming Chemoresistance in Triple Negative Breast Cancer: Emerging Role of MicroRNAs. Front Oncol 10:581158. https://doi.org/10.3389/fonc.2020.581158

    Article  Google Scholar 

  121. Corti C, Crimini E, Tarantino P et al (2021) Intratumor Heterogeneity and Its Impact on Patient Stratification in Triple-Negative Breast Cancer. Front Oncol 11:658957. https://doi.org/10.3389/fonc.2021.658957

    Article  Google Scholar 

  122. Liu H, Wang J, Wang J, Wang P (2021) Role of cancer stem cells and signaling pathways in chemoresistance of triple-negative breast cancer. Biomed Pharmacother. 133:110968. https://doi.org/10.1016/j.biopha.2020.110968

    Article  CAS  PubMed  Google Scholar 

  123. Shen L, O’Shea DF, Singh RK et al (2021) Molecular Mechanisms and Clinical Implications of Chemotherapy Drug Resistance in Triple-Negative Breast Cancer. Drug Resist Updat 54:100739. https://doi.org/10.1016/j.drup.2021.100739

    Article  Google Scholar 

  124. Jia Y, Zhang S, Miao L et al (2020) Nanotechnology in Overcoming the Shortcomings of Chemotherapy for Triple-Negative Breast Cancer. Theranostics 10(1):437–456. https://doi.org/10.7150/thno.37018

    Article  Google Scholar 

  125. Bayo J, Castaño MA, Rivera F et al (2020) A comprehensive study of epigenetic alterations in hepatocellular carcinoma identifies potential therapeutic targets. J Hepatol 72(3):523–536. https://doi.org/10.1016/j.jhep.2019.10.03

    Article  Google Scholar 

  126. Wu Y, Liu Q, Li Y et al (2021) Targeted delivery of combined anticancer therapeutics to TNBC cells by nanoparticle-mediated enhanced MRI. Drug Deliv Transl Res 11(3):974–984. https://doi.org/10.1007/s13346-021-00958-6

    Article  Google Scholar 

  127. Samson P, Lewis A, Deodhar K et al (2021) Role of Radiomics in Diagnosis and Management of Breast Cancer: Current Perspectives. Curr Oncol Rep 23(3):26. https://doi.org/10.1007/s11912-021-01004-y

    Article  Google Scholar 

  128. McCann KE, Hurvitz SA (2021) Advances in the Use of PARP Inhibitor Therapy for Breast Cancer. Drugs Context 10. https://doi.org/10.7573/dic.2021-2-6

  129. Rodrigues MA, de Oliveira IS, Marques PZ et al (2020) Triple-negative breast cancer: molecular basis, treatment and resistance mechanisms. J Cancer Res Clin Oncol 146(10):2655–2679. https://doi.org/10.1007/s00432-020-03291-3

    Article  Google Scholar 

  130. Kaklamani VG et al (2015) Phase II neoadjuvant clinical trial of carboplatin and eribulin in women with triple negative early-stage breast cancer (NCT01372579). Breast Cancer Res Treat 151(3):629–638. https://doi.org/10.1007/s10549-015-3435-y

    Article  CAS  PubMed  Google Scholar 

  131. Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT (2014) Novel Theranostic DNA Nanoscaffolds for the Simultaneous Detection and Killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces 6(24):21822–21831. https://doi.org/10.1021/am502591c

    Article  CAS  PubMed  Google Scholar 

  132. Santos AC et al (2018) Layer-by-Layer coated drug-core nanoparticles as versatile delivery platforms. In: Design and Development of New Nanocarriers. Elsevier. pp. 595–635. https://doi.org/10.1016/B978-0-12-813627-0.00016-8

  133. Zhang X, Liang T, Ma Q (2021) Layer-by-Layer assembled nano-drug delivery systems for cancer treatment. Drug Deliv 28(1):655–669. https://doi.org/10.1080/10717544.2021.1905748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lu B et al (2019) pH responsive chitosan and hyaluronic acid layer by layer film for drug delivery applications. Prog Org Coatings 135:240–247. https://doi.org/10.1016/j.porgcoat.2019.06.012

    Article  CAS  Google Scholar 

  135. Freag MS, Elnaggar YS, Abdelmonsif DA, Abdallah OY (2016) Layer-by-layer-coated lyotropic liquid crystalline nanoparticles for active tumor targeting of rapamycin. Nanomedicine 11(22):2975–2996. https://doi.org/10.2217/nnm-2016-0236

    Article  CAS  PubMed  Google Scholar 

  136. Mu Q et al (2021) Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer. Mater Today 50:149–169. https://doi.org/10.1016/j.mattod.2021.08.002

    Article  CAS  Google Scholar 

  137. Fahrenholtz CD, Swanner J, Ramirez-Perez M, Singh RN (2017) Heterogeneous Responses of Ovarian Cancer Cells to Silver Nanoparticles as a Single Agent and in Combination with Cisplatin. J Nanomater. 2017:1–11. https://doi.org/10.1155/2017/5107485

    Article  CAS  Google Scholar 

  138. Haney MJ et al (2020) Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy. J Neuroimmune Pharmacol 15(3):487–500. https://doi.org/10.1007/s11481-019-09884-9

    Article  PubMed  Google Scholar 

  139. Byrski T et al (2009) Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 115(2):359–363. https://doi.org/10.1007/s10549-008-0128-9

    Article  CAS  PubMed  Google Scholar 

  140. Pala R, Anju V, Dyavaiah M, Busi S, Nauli SM (2020) Nanoparticle-Mediated Drug Delivery for the Treatment of Cardiovascular Diseases. Int J Nanomedicine 15:3741–3769. https://doi.org/10.2147/IJN.S250872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Isakoff SJ et al (2015) TBCRC009: A Multicenter Phase II Clinical Trial of Platinum Monotherapy With Biomarker Assessment in Metastatic Triple-Negative Breast Cancer. J Clin Oncol 33(17):1902–1909. https://doi.org/10.1200/JCO.2014.57.6660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Byrski T et al (2014) Pathologic complete response to neoadjuvant cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 147(2):401–405. https://doi.org/10.1007/s10549-014-3100-x

    Article  CAS  PubMed  Google Scholar 

  143. Silver DP et al (2010) Efficacy of Neoadjuvant Cisplatin in Triple-Negative Breast Cancer. J Clin Oncol 28(7):1145–1153. https://doi.org/10.1200/JCO.2009.22.4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tovey H et al (2015) Managing non-proportionality of hazards (PH) within TNT: a randomised phase III trial of carboplatin compared to docetaxel for patients with metastatic or recurrent locally advanced triple negative (TN) or brca1/2 breast cancer (BC). Trials 16(S2):P150. https://doi.org/10.1186/1745-6215-16-S2-P150

    Article  PubMed Central  Google Scholar 

  145. Byrski T et al (2012) Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancer. Breast Cancer Res 14(4):R110. https://doi.org/10.1186/bcr3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Denkert C, Liedtke C, Tutt A, von Minckwitz G (2017) Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet 389(10087):2430–2442. https://doi.org/10.1016/S0140-6736(16)32454-0

    Article  CAS  PubMed  Google Scholar 

  147. Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP (2004) The Role of BRCA1 in the Cellular Response to Chemotherapy. JNCI J Natl Cancer Inst 96(22):1659–1668. https://doi.org/10.1093/jnci/djh312

    Article  CAS  PubMed  Google Scholar 

  148. Yoshida K, Miki Y (2004) Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci 95(11):866–871. https://doi.org/10.1111/j.1349-7006.2004.tb02195.x

    Article  CAS  PubMed  Google Scholar 

  149. Jan N et al (2023) Biomimetic cell membrane‐coated poly (lactic‐co‐glycolic acid) nanoparticles for biomedical applications. Bioeng Transl Med 8(2). https://doi.org/10.1002/btm2.10441

  150. Yang C-E, Lee W-Y, Cheng H-W, Chung C-H, Mi F-L, Lin C-W (2019) The antipsychotic chlorpromazine suppresses YAP signaling, stemness properties, and drug resistance in breast cancer cells. Chem Biol Interact 302:28–35. https://doi.org/10.1016/j.cbi.2019.01.033

    Article  CAS  PubMed  Google Scholar 

  151. Hu L et al (2019) The potentiated checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy. Biomaterials 223:119469. https://doi.org/10.1016/j.biomaterials.2019.119469

    Article  CAS  PubMed  Google Scholar 

  152. Romero D (2019) Benefit in patients with PD-L1-positive TNBC. Nat Rev Clin Oncol 16(1):6–6. https://doi.org/10.1038/s41571-018-0127-7

    Article  PubMed  Google Scholar 

  153. Nishino M, Ramaiya NH, Hatabu H, Hodi FS (2017) Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol 14(11):655–668. https://doi.org/10.1038/nrclinonc.2017.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim MH et al (2018) YAP-Induced PD-L1 Expression Drives Immune Evasion in BRAFi-Resistant Melanoma. Cancer Immunol Res 6(3):255–266. https://doi.org/10.1158/2326-6066.CIR-17-0320

    Article  CAS  PubMed  Google Scholar 

  155. Janse van Rensburg HJ et al (2018) The Hippo Pathway Component TAZ Promotes Immune Evasion in Human Cancer through PD-L1. Cancer Res 78(6):1457–1470. https://doi.org/10.1158/0008-5472.CAN-17-3139

    Article  CAS  PubMed  Google Scholar 

  156. Le A et al (2014) Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia–cell cycle dual reporter. Proc Natl Acad Sci 111(34):12486–12491. https://doi.org/10.1073/pnas.1402012111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Imran M et al (2021) Fisetin: An anticancer perspective. Food Sci Nutr 9(1):3–16. https://doi.org/10.1002/fsn3.1872

    Article  CAS  PubMed  Google Scholar 

  158. Chen W-J, Tsai J-H, Hsu L-S, Lin C-L, Hong H-M, Pan M-H (2021) Quercetin Blocks the Aggressive Phenotype of Triple Negative Breast Cancer by Inhibiting IGF1/IGF1R-Mediated EMT Program. J Food Drug Anal 29(1):98–112. https://doi.org/10.38212/2224-6614.3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Umar SM, Patra S, Kashyap A, Arundhathi Dev JR, Kumar L, Prasad CP (2022) Quercetin Impairs HuR-Driven Progression and Migration of Triple Negative Breast Cancer (TNBC) Cells Nutr. Cancer 74(4):1497–1510. https://doi.org/10.1080/01635581.2021.1952628

    Article  CAS  Google Scholar 

  160. Yar Saglam AS, Kayhan H, Alp E, Onen HI (2021) Resveratrol enhances the sensitivity of FL118 in triple-negative breast cancer cell lines via suppressing epithelial to mesenchymal transition. Mol Biol Rep 48(1) 475–489 https://doi.org/10.1007/s11033-020-06078-y

  161. Liang Z-J et al (2021) Resveratrol Mediates the Apoptosis of Triple Negative Breast Cancer Cells by Reducing POLD1 Expression. Front Oncol 11. https://doi.org/10.3389/fonc.2021.569295

  162. Cook M, Liang Y, Besch-Williford C, Hyder S (2016) Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells. Breast Cancer Targets Ther 9:9–19. https://doi.org/10.2147/BCTT.S124860

    Article  Google Scholar 

  163. Cao D et al (2020) Luteolin suppresses epithelial-mesenchymal transition and migration of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Biomed Pharmacother 129:110462. https://doi.org/10.1016/j.biopha.2020.110462

    Article  CAS  PubMed  Google Scholar 

  164. Greenshields AL et al (2015) Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett 357(1):129–140. https://doi.org/10.1016/j.canlet.2014.11.017

    Article  CAS  PubMed  Google Scholar 

  165. Shityakov S et al (2019) Phytochemical and pharmacological attributes of piperine: A bioactive ingredient of black pepper. Eur J Med Chem 176:149–161. https://doi.org/10.1016/j.ejmech.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  166. Guan F, Ding Y, Zhang Y, Zhou Y, Li M, Wang C (2016) Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation. PLoS One 11(1):e0146553. https://doi.org/10.1371/journal.pone.0146553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mock CD, Jordan BC, Selvam C (2015) Recent advances of curcumin and its analogues in breast cancer prevention and treatment. RSC Adv 5(92):75575–75588. https://doi.org/10.1039/C5RA14925H

    Article  CAS  PubMed  Google Scholar 

  168. Şahin N, Şahin-Bölükbaşı S, Marşan H (2019) Synthesis and antitumor activity of new silver(I)-N-heterocyclic carbene complexes. J Coord Chem 72(22–24):3602–3613. https://doi.org/10.1080/00958972.2019.1697808

    Article  CAS  Google Scholar 

  169. Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P (2017) Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems. Pharmaceutics 9(4):46. https://doi.org/10.3390/pharmaceutics9040046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Iacopetta D et al (2020) Is the Way to Fight Cancer Paved with Gold? Metal-Based Carbene Complexes with Multiple and Fascinating Biological Features. Pharmaceuticals 13(5):91. https://doi.org/10.3390/ph13050091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kwon Y-M, Kim SH, Jung Y-S, Kwak J-H (2021) Synthesis and Biological Evaluation of (S)-2-(Substituted arylmethyl)-1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indole-3-carboxamide Analogs and Their Synergistic Effect against PTEN-Deficient MDA-MB-468 Cells. Pharmaceuticals 14(10):974. https://doi.org/10.3390/ph14100974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Qin J et al (2022) Design, synthesis and biological evaluation of novel 1,3,4,9-tetrahydropyrano[3,4-b]indoles as potential treatment of triple negative breast cancer by suppressing PI3K/AKT/mTOR pathway. Bioorg Med Chem 55:116594. https://doi.org/10.1016/j.bmc.2021.116594

    Article  CAS  PubMed  Google Scholar 

  173. Hou S et al (2014) Novel Carbazole Inhibits Phospho-STAT3 through Induction of Protein-Tyrosine Phosphatase PTPN6. J Med Chem 57(15):6342–6353. https://doi.org/10.1021/jm4018042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Iacopetta D et al (2017) Multifaceted properties of 1,4-dimethylcarbazoles: Focus on trimethoxybenzamide and trimethoxyphenylurea derivatives as novel human topoisomerase II inhibitors. Eur J Pharm Sci 96:263–272. https://doi.org/10.1016/j.ejps.2016.09.039

    Article  CAS  PubMed  Google Scholar 

  175. Saturnino C et al (2018) Inhibition of Human Topoisomerase II by N, N, N -Trimethylethanammonium Iodide Alkylcarbazole Derivatives. ChemMedChem 13(24):2635–2643. https://doi.org/10.1002/cmdc.201800546

    Article  CAS  PubMed  Google Scholar 

  176. Fedele M, Cerchia L, Chiappetta G (2017) The Epithelial-to-Mesenchymal Transition in Breast Cancer: Focus on Basal-Like Carcinomas. Cancers (Basel) 9(12):134. https://doi.org/10.3390/cancers9100134

    Article  CAS  PubMed  Google Scholar 

  177. Shah V, Bhaliya J, Patel GM (2022) In silico docking and ADME study of deketene curcumin derivatives (DKC) as an aromatase inhibitor or antagonist to the estrogen-alpha positive receptor (Erα+): potent application of breast cancer. Struct Chem 33(2):571–600. https://doi.org/10.1007/s11224-021-01871-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jan N et al (2023) Old drug, new tricks: polymer-based nanoscale systems for effective cytarabine delivery. Naunyn Schmiedebergs Arch Pharmacol. https://doi.org/10.1007/s00210-023-02865-z

    Article  PubMed  Google Scholar 

  179. Ferlay J et al (2015) Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  180. Henriksen EL, Carlsen JF, Vejborg IM, Nielsen MB, Lauridsen CA (2019) The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review. Acta Radiol 60(1):13–18. https://doi.org/10.1177/0284185118770917

    Article  PubMed  Google Scholar 

  181. Mansoori B et al (2019) miR-142-3p is a tumor suppressor that inhibits estrogen receptor expression in ER-positive breast cancer. J Cell Physiol 234(9):16043–16053. https://doi.org/10.1002/jcp.28263

    Article  CAS  PubMed  Google Scholar 

  182. Iacopetta D et al (2017) Old Drug Scaffold, New Activity: Thalidomide-Correlated Compounds Exert Different Effects on Breast Cancer Cell Growth and Progression. ChemMedChem 12(5):381–389. https://doi.org/10.1002/cmdc.201600629

    Article  CAS  PubMed  Google Scholar 

  183. Mamnoon B et al (2021) Targeted Polymeric Nanoparticles for Drug Delivery to Hypoxic, Triple-Negative Breast Tumors. ACS Appl Bio Mater 4(2):1450–1460. https://doi.org/10.1021/acsabm.0c01336

    Article  CAS  PubMed  Google Scholar 

  184. Soe ZC et al (2019) Transferrin-Conjugated Polymeric Nanoparticle for Receptor-Mediated Delivery of Doxorubicin in Doxorubicin-Resistant Breast Cancer Cells. Pharmaceutics 11(2):63. https://doi.org/10.3390/pharmaceutics11020063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yang J et al (2007) Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J Mater Chem 17(26):2695. https://doi.org/10.1039/b702538f

    Article  CAS  Google Scholar 

  186. Jithan A, Madhavi K, Madhavi M, Prabhakar K (2011) Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int J Pharm Investig 1(2):119. https://doi.org/10.4103/2230-973X.82432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bhardwaj V, Ankola DD, Gupta SC, Schneider M, Lehr C-M, Kumar MNVR (2009) PLGA Nanoparticles Stabilized with Cationic Surfactant: Safety Studies and Application in Oral Delivery of Paclitaxel to Treat Chemical-Induced Breast Cancer in Rat. Pharm Res 26(11):2495–2503. https://doi.org/10.1007/s11095-009-9965-4

    Article  CAS  PubMed  Google Scholar 

  188. Mukherjee B, Maji R, Dey NS, Satapathy BS, Mondal S (2014) Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int J Nanomedicine 3107. https://doi.org/10.2147/IJN.S63535.

  189. Zhou Z et al (2017) Sequential delivery of erlotinib and doxorubicin for enhanced triple negative Breast cancer treatment using polymeric nanoparticle. Int J Pharm. 530(1–2):300–307. https://doi.org/10.1016/j.ijpharm.2017.07.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zubris KAV, Liu R, Colby A, Schulz MD, Colson YL, Grinstaff MW (2013) In Vitro Activity of Paclitaxel-Loaded Polymeric Expansile Nanoparticles in Breast Cancer Cells. Biomacromolecules 14(6):2074–2082. https://doi.org/10.1021/bm400434h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dehghan Kelishady P, Saadat E, Ravar F, Akbari H, Dorkoosh F (2015) Pluronic F127 polymeric micelles for co-delivery of paclitaxel and lapatinib against metastatic breast cancer: preparation, optimization and in vitro evaluation. Pharm Dev Technol 20(8):1009–1017. https://doi.org/10.3109/10837450.2014.965323

    Article  CAS  PubMed  Google Scholar 

  192. Zhao Y, Zhang T, Duan S, Davies NM, Forrest ML (2014) CD44-tropic polymeric nanocarrier for breast cancer targeted rapamycin chemotherapy. Nanomedicine Nanotechnology Biol Med 10(6):1221–1230. https://doi.org/10.1016/j.nano.2014.02.015

    Article  CAS  Google Scholar 

  193. Bressler EM et al (2018) Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human triple-negative breast cancer cells. J Biomed Mater Res Part A 106(6):1753–1764. https://doi.org/10.1002/jbm.a.36360

    Article  CAS  Google Scholar 

  194. Wu Y et al (2015) Novel Simvastatin-Loaded Nanoparticles Based on Cholic Acid-Core Star-Shaped PLGA for Breast Cancer Treatment. J Biomed Nanotechnol 11(7):1247–1260. https://doi.org/10.1166/jbn.2015.2068

    Article  CAS  PubMed  Google Scholar 

  195. Tseng P-T et al (2018) Peripheral iron levels in children with attention-deficit hyperactivity disorder: a systematic review and meta-analysis. Sci Rep 8(1):788. https://doi.org/10.1038/s41598-017-19096-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chen J, Li S, Shen Q, He H, Zhang Y (2011) Enhanced cellular uptake of folic acid–conjugated PLGA–PEG nanoparticles loaded with vincristine sulfate in human breast cancer. Drug Dev Ind Pharm 37(11):1339–1346. https://doi.org/10.3109/03639045.2011.575162

    Article  CAS  PubMed  Google Scholar 

  197. Huo Z et al (2015) Novel nanosystem to enhance the antitumor activity of lapatinib in breast cancer treatment: Therapeutic efficacy evaluation. Cancer Sci 106(10):1429–1437. https://doi.org/10.1111/cas.12737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Das M, Dilnawaz F, Sahoo SK (2011) Targeted nutlin-3a loaded nanoparticles inhibiting p53–MDM2 interaction: novel strategy for breast cancer therapy. Nanomedicine 6(3):489–507. https://doi.org/10.2217/nnm.10.102

    Article  CAS  PubMed  Google Scholar 

  199. Zhou W et al (2014) Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells. J Drug Target 22(1):57–66. https://doi.org/10.3109/1061186X.2013.839683

    Article  CAS  PubMed  Google Scholar 

  200. Esim O, Hascicek C (2021) Lipid-Coated Nanosized Drug Delivery Systems for an Effective Cancer Therapy. Curr Drug Deliv 18(2):147–161. https://doi.org/10.2174/1567201817666200512104441

    Article  CAS  PubMed  Google Scholar 

  201. Niza et al (2019) Poly(Cyclohexene Phthalate) Nanoparticles for Controlled Dasatinib Delivery in Breast Cancer Therapy. Nanomaterials 9(9):1208. https://doi.org/10.3390/nano9091208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Won Y-W, Patel AN, Bull DA (2014) Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 35(21):5627–5635. https://doi.org/10.1016/j.biomaterials.2014.03.070

    Article  CAS  PubMed  Google Scholar 

  203. Wan X et al (2019) Co-delivery of paclitaxel and cisplatin in poly(2-oxazoline) polymeric micelles: Implications for drug loading, release, pharmacokinetics and outcome of ovarian and breast cancer treatments. Biomaterials 192:1–14. https://doi.org/10.1016/j.biomaterials.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  204. Massadeh S et al (2020) Optimized Polyethylene Glycolylated Polymer-Lipid Hybrid Nanoparticles as a Potential Breast Cancer Treatment. Pharmaceutics 12(7):666. https://doi.org/10.3390/pharmaceutics12070666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Katiyar SS, Muntimadugu E, Rafeeqi TA, Domb AJ, Khan W (2016) Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv 23(7):2608–2616. https://doi.org/10.3109/10717544.2015.1039667

    Article  CAS  PubMed  Google Scholar 

  206. Li L et al (2015) Poly(ethylene glycol)-block-poly(ε-caprolactone)- and phospholipid-based stealth nanoparticles with enhanced therapeutic efficacy on murine breast cancer by improved intracellular drug delivery. Int J Nanomedicine 1791. https://doi.org/10.2147/IJN.S75186

  207. Talaei F, Azizi E, Dinarvand R, Atyabi F (2022) Thiolated Chitosan Nanoparticles as a Delivery System for Antisense Therapy: Evaluation against EGFR in T47D Breast Cancer Cells [Retraction]. Int J Nanomedicine 17:3581–3582. https://doi.org/10.2147/IJN.S385585

    Article  Google Scholar 

  208. Aneja et al (2014) Cancer Targeted Magic Bullets for Effective Treatment of Cancer. Recent Patents Anti-Infective Drug Discov 9

  209. Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG (2018) How can nanotechnology help the fight against breast cancer? Nanoscale 10(25):11719–11731. https://doi.org/10.1039/C8NR02796J

    Article  CAS  PubMed  Google Scholar 

  210. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171. https://doi.org/10.1038/nrc1566

    Article  CAS  PubMed  Google Scholar 

  211. Gary DJ, Min J, Kim Y, Park K, Won Y-Y (2013) The Effect of N/P Ratio on the In Vitro and In Vivo Interaction Properties of PEGylated Poly[2-(dimethylamino)ethyl methacrylate]-Based siRNA Complexes. Macromol Biosci 13(8):1059–1071. https://doi.org/10.1002/mabi.201300046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Boehnke N et al (2020) Theranostic Layer-by-Layer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing. Angew Chemie 132(7):2798–2805. https://doi.org/10.1002/ange.201911762

    Article  Google Scholar 

  213. Shafiei-Irannejad V et al (2018) Reversion of Multidrug Resistance by Co-Encapsulation of Doxorubicin and Metformin in Poly(lactide-co-glycolide)-d-α-tocopheryl Polyethylene Glycol 1000 Succinate Nanoparticles. Pharm Res 35(6):119. https://doi.org/10.1007/s11095-018-2404-7

    Article  CAS  PubMed  Google Scholar 

  214. Bulbake U, Doppalapudi S, Kommineni N, Khan W (2017) Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 9(4):12. https://doi.org/10.3390/pharmaceutics9020012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Naeem S, Viswanathan G, Bin Misran M (2018) Liposomes as colloidal nanovehicles: on the road to success in intravenous drug delivery. Rev Chem Eng 34(3):365–383 https://doi.org/10.1515/revce-2016-0018

  216. Avvakumova S et al (2019) Does conjugation strategy matter? Cetuximab-conjugated gold nanocages for targeting triple-negative breast cancer cells. Nanoscale Adv 1(9):3626–3638. https://doi.org/10.1039/C9NA00241C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Juneja R, Lyles Z, Vadarevu H, Afonin KA, Vivero-Escoto JL (2021) Multimodal Polysilsesquioxane Nanoparticles for Combinatorial Therapy and Gene Delivery in Triple-Negative Breast Cancer, 1st ed

  218. Riley RS, Day ES (2017) Frizzled7 Antibody-Functionalized Nanoshells Enable Multivalent Binding for Wnt Signaling Inhibition in Triple Negative Breast Cancer Cells. Small 13(26):1700544. https://doi.org/10.1002/smll.201700544

    Article  CAS  Google Scholar 

  219. Colombo M et al (2018) Half-Chain Cetuximab Nanoconjugates Allow Multitarget Therapy of Triple Negative Breast Cancer. Bioconjug Chem 29(11):3817–3832. https://doi.org/10.1021/acs.bioconjchem.8b00667

    Article  CAS  PubMed  Google Scholar 

  220. Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N (2015) Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol 172(17):4228–4237. https://doi.org/10.1111/bph.13211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chen F et al (2013) In Vivo Tumor Targeting and Image-Guided Drug Delivery with Antibody-Conjugated, Radiolabeled Mesoporous Silica Nanoparticles. ACS Nano 7(10):9027–9039. https://doi.org/10.1021/nn403617j

    Article  CAS  PubMed  Google Scholar 

  222. Narayan R, Nayak U, Raichur A, Garg S (2018) Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 10(3):118. https://doi.org/10.3390/pharmaceutics10030118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Poudel K et al (2019) “Multifaceted NIR-responsive polymer-peptide-enveloped drug-loaded copper sulfide nanoplatform for chemo-phototherapy against highly tumorigenic prostate cancer”, Nanomedicine Nanotechnology. Biol Med 21:102042. https://doi.org/10.1016/j.nano.2019.102042

    Article  CAS  Google Scholar 

  224. Park E, Yazdi SJM, Lee J-H (2020) Development of Wearable Temperature Sensor Based on Peltier Thermoelectric Device to Change Human Body Temperature. Sensors Mater 32(9):2959. https://doi.org/10.18494/SAM.2020.2741

    Article  CAS  Google Scholar 

  225. Laha D et al (2019) Fabrication of curcumin-loaded folic acid-tagged metal organic framework for triple negative breast cancer therapy in in vitro and in vivo systems. New J Chem 43(1):217–229. https://doi.org/10.1039/C8NJ03350A

    Article  CAS  Google Scholar 

  226. Emami F et al (2021) Photoimmunotherapy with cetuximab-conjugated gold nanorods reduces drug resistance in triple negative breast cancer spheroids with enhanced infiltration of tumor-associated macrophages. J Control Release 329:645–664. https://doi.org/10.1016/j.jconrel.2020.10.001

    Article  CAS  PubMed  Google Scholar 

  227. Lin Z, Monteiro-Riviere NA, Riviere JE (2015) Pharmacokinetics of metallic nanoparticles. Wires Nanomed Nanobi 7(2):189–217. https://doi.org/10.1002/wnan.1304

    Article  CAS  Google Scholar 

  228. Evans ER, Bugga P, Asthana V, Drezek R (2018) Metallic nanoparticles for cancer immunotherapy. Mater Today 21(6):673–685. https://doi.org/10.1016/j.mattod.2017.11.022

    Article  CAS  Google Scholar 

  229. Banstola A, Emami F, Jeong J-H, Yook S (2018) Current Applications of Gold Nanoparticles for Medical Imaging and as Treatment Agents for Managing Pancreatic Cancer. Macromol Res 26(11):955–964. https://doi.org/10.1007/s13233-018-6139-4

    Article  CAS  Google Scholar 

  230. Emami F et al (2019) Doxorubicin and Anti-PD-L1 Antibody Conjugated Gold Nanoparticles for Colorectal Cancer Photochemotherapy. Mol Pharm 16(3):1184–1199. https://doi.org/10.1021/acs.molpharmaceut.8b01157

    Article  CAS  PubMed  Google Scholar 

  231. Ahir M et al (2016) Tailored-CuO-nanowire decorated with folic acid mediated coupling of the mitochondrial-ROS generation and miR425-PTEN axis in furnishing potent anti-cancer activity in human triple negative breast carcinoma cells. Biomaterials 76:115–132. https://doi.org/10.1016/j.biomaterials.2015.10.044

    Article  CAS  PubMed  Google Scholar 

  232. Brinkman AM, Wu J, Ersland K, Xu W (2014) Estrogen receptor α and aryl hydrocarbon receptor independent growth inhibitory effects of aminoflavone in breast cancer cells. BMC Cancer 14(1):344. https://doi.org/10.1186/1471-2407-14-344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. McLean L et al (2007) Aminoflavone induces oxidative DNA damage and reactive oxidative species-mediated apoptosis in breast cancer cells. Int J Cancer 122(7):1665–1674. https://doi.org/10.1002/ijc.23244

    Article  CAS  Google Scholar 

  234. Finlay J, Roberts CM, Lowe G, Loeza J, Rossi JJ, Glackin CA (2015) RNA-Based TWIST1 Inhibition via Dendrimer Complex to Reduce Breast Cancer Cell Metastasis. Biomed Res Int 2015:1–12. https://doi.org/10.1155/2015/382745

    Article  CAS  Google Scholar 

  235. Zhang L et al (2018) ZD2-Engineered Gold Nanostar@Metal-Organic Framework Nanoprobes for T 1 -Weighted Magnetic Resonance Imaging and Photothermal Therapy Specifically Toward Triple-Negative Breast Cancer. Adv Healthc Mater 7(24):1801144. https://doi.org/10.1002/adhm.201801144

    Article  CAS  Google Scholar 

  236. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307. https://doi.org/10.1016/j.progpolymsci.2013.07.005

    Article  CAS  Google Scholar 

  237. Dufes C, Uchegbu I, Schatzlein A (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57(15):2177–2202. https://doi.org/10.1016/j.addr.2005.09.017

    Article  CAS  PubMed  Google Scholar 

  238. Kesharwani P et al (2015) PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today 18(10):565–572. https://doi.org/10.1016/j.mattod.2015.06.003

    Article  CAS  Google Scholar 

  239. Bharti R et al (2017) Somatostatin receptor targeted liposomes with Diacerein inhibit IL-6 for breast cancer therapy. Cancer Lett 388:292–302. https://doi.org/10.1016/j.canlet.2016.12.021

    Article  CAS  PubMed  Google Scholar 

  240. Duwa R, Emami F, Lee S, Jeong J-H, Yook S (2019) Polymeric and lipid-based drug delivery systems for treatment of glioblastoma multiforme. J Ind Eng Chem 79:261–273. https://doi.org/10.1016/j.jiec.2019.06.050

    Article  CAS  Google Scholar 

  241. Akbarzadeh A et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102. https://doi.org/10.1186/1556-276X-8-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ (2019) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 15:1–18. https://doi.org/10.1016/j.jare.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  243. Branowska D et al (2018) Synthesis of unsymmetrical disulfanes bearing 1,2,4-triazine scaffold and their in vitro screening towards anti-breast cancer activity. Monatshefte für Chemie – Chem Mon 149(8):1409–1420. https://doi.org/10.1007/s00706-018-2206-y

    Article  CAS  Google Scholar 

  244. Mostafa AS, Gomaa RM, Elmorsy MA (2019) Design and synthesis of 2-phenyl benzimidazole derivatives as VEGFR-2 inhibitors with anti-breast cancer activity. Chem Biol Drug Des 93(4):454–463. https://doi.org/10.1111/cbdd.13433

    Article  CAS  PubMed  Google Scholar 

  245. Liu J, Ming B, Gong G-H, Wang D, Bao G-L, Yu L-J (2018) Current research on anti-breast cancer synthetic compounds. RSC Adv 8(8):4386–4416. https://doi.org/10.1039/C7RA12912B

    Article  CAS  Google Scholar 

  246. Sideras K et al (2012) North Central Cancer Treatment Group (NCCTG) N0537: Phase II Trial of VEGF-Trap in Patients With Metastatic Breast Cancer Previously Treated With an Anthracycline and/or a Taxane. Clin Breast Cancer 12(6):387–391. https://doi.org/10.1016/j.clbc.2012.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Alvarez RH, Valero V, Hortobagyi GN (2010) Emerging Targeted Therapies for Breast Cancer. J Clin Oncol 28(20):3366–3379. https://doi.org/10.1200/JCO.2009.25.4011

    Article  CAS  PubMed  Google Scholar 

  248. Jia LY, Shanmugam MK, Sethi G, Bishayee A (2016) Potential role of targeted therapies in the treatment of triple-negative breast cancer. Anticancer Drugs 27(3):147–155. https://doi.org/10.1097/CAD.0000000000000328

    Article  CAS  PubMed  Google Scholar 

  249. Levin M (2009) Bioelectric mechanisms in regeneration: Unique aspects and future perspectives. Semin Cell Dev Biol 20(5):543–556. https://doi.org/10.1016/j.semcdb.2009.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  250. McLaughlin KA, Levin M (2018) Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form. Dev Biol 433(2):177–189. https://doi.org/10.1016/j.ydbio.2017.08.032

    Article  CAS  PubMed  Google Scholar 

  251. Zhu R, Sun Z, Li C, Ramakrishna S, Chiu K, He L (2019) Electrical stimulation affects neural stem cell fate and function in vitro. Exp Neurol 319:112963. https://doi.org/10.1016/j.expneurol.2019.112963

    Article  PubMed  Google Scholar 

  252. O’Connor D, Caulfield B (2018) The application of neuromuscular electrical stimulation (NMES) in cancer rehabilitation: current prescription, pitfalls, and future directions. Support Care Cancer 26(11):3661–3663. https://doi.org/10.1007/s00520-018-4269-z

    Article  PubMed  Google Scholar 

  253. Young CC, Vedadghavami A, Bajpayee AG (2020) Bioelectricity for Drug Delivery: The Promise of Cationic Therapeutics. Bioelectricity 2(2):68–81. https://doi.org/10.1089/bioe.2020.0012

    Article  PubMed  PubMed Central  Google Scholar 

  254. Manabe M, Mie M, Yanagida Y, Aizawa M, Kobatake E (2004) Combined effect of electrical stimulation and cisplatin in HeLa cell death. Biotechnol Bioeng 86(6):661–666. https://doi.org/10.1002/bit.20110

    Article  CAS  PubMed  Google Scholar 

  255. Jossinet J, Schmitt M (1999) A Review of Parameters for the Bioelectrical Characterization of Breast Tissue. Ann NY Acad Sci 873(1):30–41. https://doi.org/10.1111/j.1749-6632.1999.tb09446.x

    Article  CAS  PubMed  Google Scholar 

  256. Sailapu SK et al (2021) Self-activated microbatteries to promote cell death through local electrical stimulation. Nano Energy 83:105852. https://doi.org/10.1016/j.nanoen.2021.105852

    Article  CAS  Google Scholar 

  257. Robinson AJ et al (2021) Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. Adv Ther 4(3):2000248. https://doi.org/10.1002/adtp.202000248

    Article  CAS  Google Scholar 

  258. Yoon YN, Lee D-S, Park HJ, Kim J-S (2020) Barium Titanate Nanoparticles Sensitise Treatment-Resistant Breast Cancer Cells to the Antitumor Action of Tumour-Treating Fields. Sci Rep 10(1):2560. https://doi.org/10.1038/s41598-020-59445-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Hu M, Hong L, He S, Huang G, Cheng Y, Chen Q (2020) Effects of electrical stimulation on cell activity, cell cycle, cell apoptosis and β-catenin pathway in the injured dorsal root ganglion cell. Mol Med Rep. https://doi.org/10.3892/mmr.2020.11058

    Article  PubMed  PubMed Central  Google Scholar 

  260. Love MR, Palee S, Chattipakorn SC, Chattipakorn N (2018) Effects of electrical stimulation on cell proliferation and apoptosis. J Cell Physiol 233(3):1860–1876. https://doi.org/10.1002/jcp.25975

    Article  CAS  PubMed  Google Scholar 

  261. Conta G, Libanori A, Tat T, Chen G, Chen J (2021) Triboelectric Nanogenerators for Therapeutic Electrical Stimulation. Adv Mater 33(26):2007502. https://doi.org/10.1002/adma.202007502

    Article  CAS  Google Scholar 

  262. Marino A, Battaglini M, De Pasquale D, Degl’Innocenti A, Ciofani G (2018) Ultrasound-Activated Piezoelectric Nanoparticles Inhibit Proliferation of Breast Cancer Cells. Sci Rep 8(1): 6257 https://doi.org/10.1038/s41598-018-24697-1

  263. Shi X, Chen Y, Zhao Y, Ye M, Zhang S, Gong S (2022) Ultrasound-activable piezoelectric membranes for accelerating wound healing. Biomater Sci 10(3):692–701. https://doi.org/10.1039/D1BM01062J

    Article  CAS  PubMed  Google Scholar 

  264. Yao T et al (2019) The antibacterial effect of potassium-sodium niobate ceramics based on controlling piezoelectric properties. Colloids Surfaces B Biointerfaces 175:463–468. https://doi.org/10.1016/j.colsurfb.2018.12.022

    Article  CAS  PubMed  Google Scholar 

  265. Li C et al (2020) Wireless Electrochemotherapy by Selenium-Doped Piezoelectric Biomaterials to Enhance Cancer Cell Apoptosis. ACS Appl Mater nterfaces 12(31):34505–34513. https://doi.org/10.1021/acsami.0c04666

    Article  CAS  Google Scholar 

  266. Genchi GG, Marino A, Rocca A, Mattoli V, Ciofani G (2016) Barium titanate nanoparticles: promising multitasking vectors in nanomedicine. Nanotechnology 27(23):232001. https://doi.org/10.1088/0957-4484/27/23/232001

    Article  CAS  PubMed  Google Scholar 

  267. Shuai C et al (2020) A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy 74:104825. https://doi.org/10.1016/j.nanoen.2020.104825

    Article  CAS  Google Scholar 

  268. Min G et al (2021) Ferroelectric-assisted high-performance triboelectric nanogenerators based on electrospun P(VDF-TrFE) composite nanofibers with barium titanate nanofillers. Nano Energy 90:106600. https://doi.org/10.1016/j.nanoen.2021.106600

    Article  CAS  Google Scholar 

  269. Wilhelm S et al (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1(5):16014. https://doi.org/10.1038/natrevmats.2016.14

    Article  CAS  Google Scholar 

  270. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci 103(13):4930–4934. https://doi.org/10.1073/pnas.0600997103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Bhar B, Chouhan D, Pai N, Mandal BB (2021) Harnessing Multifaceted Next-Generation Technologies for Improved Skin Wound Healing. ACS Appl Bio Mater 4(11):7738–7763. https://doi.org/10.1021/acsabm.1c00880

    Article  CAS  PubMed  Google Scholar 

  272. Kai H et al (2009) A novel combination of mild electrical stimulation and hyperthermia: General concepts and applications. Int J Hyperth 25(8):655–660. https://doi.org/10.3109/02656730903039605

    Article  CAS  Google Scholar 

  273. van Nimwegen MJ, van de Water B (2007) Focal adhesion kinase: A potential target in cancer therapy. Biochem Pharmacol 73(5):597–609. https://doi.org/10.1016/j.bcp.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  274. Huveneers S, Danen EHJ (2009) Adhesion signaling – crosstalk between integrins, Src and Rho. J Cell Sci 122(8):1059–1069. https://doi.org/10.1242/jcs.039446

    Article  CAS  PubMed  Google Scholar 

  275. El Moukhtari SH, Rodríguez-Nogales C, Blanco-Prieto MJ (2021) Oral lipid nanomedicines: Current status and future perspectives in cancer treatment. Adv Drug Deliv Rev 173:238–251. https://doi.org/10.1016/j.addr.2021.03.004

    Article  CAS  PubMed  Google Scholar 

  276. Yan L, Shen J, Wang J, Yang X, Dong S, Lu S (2020) Nanoparticle-Based Drug Delivery System: A Patient-Friendly Chemotherapy for Oncology. Dose-Response 18(3):155932582093616. https://doi.org/10.1177/1559325820936161

    Article  CAS  Google Scholar 

  277. Miller AD (2013) Lipid-Based Nanoparticles in Cancer Diagnosis and Therapy. J Drug Deliv 2013:1–9. https://doi.org/10.1155/2013/165981

    Article  CAS  Google Scholar 

  278. Aqil F, Munagala R, Agrawal AK, Gupta R (2019) Anticancer Phytocompounds. In: New Look to Phytomedicine. Elsevier, pp. 237–272. https://doi.org/10.1016/B978-0-12-814619-4.00010-0.

  279. Talluri SV, Kuppusamy G, Karri VVSR, Tummala S, Madhunapantula SV (2016) Lipid-based nanocarriers for breast cancer treatment – comprehensive review. Drug Deliv 23(4):1291–1305. https://doi.org/10.3109/10717544.2015.1092183

    Article  CAS  PubMed  Google Scholar 

  280. Čerpnjak K, Zvonar A, Gašperlin M, Vrečer F (2013) Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm 63(4):427–445. https://doi.org/10.2478/acph-2013-0040

    Article  CAS  PubMed  Google Scholar 

  281. Kushwah V, Katiyar SS, Agrawal AK, Gupta RC, Jain S (2018) Co-delivery of docetaxel and gemcitabine using PEGylated self-assembled stealth nanoparticles for improved breast cancer therapy. Nanomedicine Nanotechnology Biol Med 14(5):1629–1641. https://doi.org/10.1016/j.nano.2018.04.009

    Article  CAS  Google Scholar 

  282. Kushwah V et al (2018) Implication of linker length on cell cytotoxicity, pharmacokinetic and toxicity profile of gemcitabine-docetaxel combinatorial dual drug conjugate. Int J Pharm 548(1):357–374. https://doi.org/10.1016/j.ijpharm.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  283. Lim SB, Banerjee A, Önyüksel H (2012) Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 163(1):34–45. https://doi.org/10.1016/j.jconrel.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  284. Darwis Y, Ali Khan A, Mudassir J, Mohtar N (2013) Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine 2733. https://doi.org/10.2147/IJN.S41521

  285. Kumar DN et al (2022) Exosomes as Emerging Drug Delivery and Diagnostic Modality for Breast Cancer: Recent Advances in Isolation and Application. Cancers (Basel) 14(6):1435. https://doi.org/10.3390/cancers14061435

    Article  CAS  PubMed  Google Scholar 

  286. Antimisiaris S, Mourtas S, Marazioti A (2018) Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. Pharmaceutics 10(4):218. https://doi.org/10.3390/pharmaceutics10040218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Chen Y-S, Lin E-Y, Chiou T-W, Harn H-J (2020) Exosomes in clinical trial and their production in compliance with good manufacturing practice. Tzu Chi Med J 32(2):113. https://doi.org/10.4103/tcmj.tcmj_182_19

    Article  CAS  Google Scholar 

  288. Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12(11):2826–2841. https://doi.org/10.1039/C5SM02958A

    Article  CAS  PubMed  Google Scholar 

  289. Kaur T, Slavcev R (2013) Solid Lipid Nanoparticles: Tuneable Anti-Cancer Gene/Drug Delivery Systems. In: Novel Gene Therapy Approaches. InTech. https://doi.org/10.5772/54781

  290. Gabizon AA, Shmeeda H, Zalipsky S (2006) Pros and Cons of the Liposome Platform in Cancer Drug Targeting. J Liposome Res 16(3):175–183. https://doi.org/10.1080/08982100600848769

    Article  CAS  PubMed  Google Scholar 

  291. Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J (2012) Nanostructured lipid carriers system: Recent advances in drug delivery. J Drug Target 20(10):813–830. https://doi.org/10.3109/1061186X.2012.716845

    Article  CAS  PubMed  Google Scholar 

  292. Persano F, Gigli G, Leporatti S (2021) Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. Nano Express 2(1):012006. https://doi.org/10.1088/2632-959X/abeb4b

    Article  Google Scholar 

  293. Wang C et al (2018) Triple negative breast cancer in Asia: An insider’s view. Cancer Treat Rev 62:29–38. https://doi.org/10.1016/j.ctrv.2017.10.014

    Article  PubMed  Google Scholar 

  294. Kim B, Pena CD, Auguste DT (2019) Targeted Lipid Nanoemulsions Encapsulating Epigenetic Drugs Exhibit Selective Cytotoxicity on CDH1 – /FOXM1 + Triple Negative Breast Cancer Cells. Mol Pharm 16(5):1813–1826. https://doi.org/10.1021/acs.molpharmaceut.8b01065

    Article  CAS  PubMed  Google Scholar 

  295. Xu H et al (2020) Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model. Biomaterials 235:119769. https://doi.org/10.1016/j.biomaterials.2020.119769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Han B et al (2021) Elemene Nanoemulsion Inhibits Metastasis of Breast Cancer by ROS Scavenging. Int J Nanomedicine 16:6035–6048. https://doi.org/10.2147/IJN.S327094

    Article  PubMed  PubMed Central  Google Scholar 

  297. Saraiva SM et al (2021) Edelfosine nanoemulsions inhibit tumor growth of triple negative breast cancer in zebrafish xenograft model. Sci Rep 11(1):9873. https://doi.org/10.1038/s41598-021-87968-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Guo P et al (2019) Dual complementary liposomes inhibit triple-negative breast tumor progression and metastasis. Sci Adv 5(3), https://doi.org/10.1126/sciadv.aav5010

  299. Chaudhuri A et al (2022) Lipid-Based Nanoparticles as a Pivotal Delivery Approach in Triple Negative Breast Cancer (TNBC) Therapy. Int J Mol Sci 23(17):10068. https://doi.org/10.3390/ijms231710068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Chen M et al (2021) Detachable Liposomes Combined Immunochemotherapy for Enhanced Triple-Negative Breast Cancer Treatment through Reprogramming of Tumor-Associated Macrophages. Nano Lett 21(14):6031–6041. https://doi.org/10.1021/acs.nanolett.1c01210

    Article  CAS  PubMed  Google Scholar 

  301. Alawak M et al (2021) ADAM 8 as a novel target for doxorubicin delivery to TNBC cells using magnetic thermosensitive liposomes. Eur J Pharm Biopharm 158:390–400. https://doi.org/10.1016/j.ejpb.2020.12.012

    Article  CAS  PubMed  Google Scholar 

  302. El-Senduny FF et al (2021) Azadiradione-loaded liposomes with improved bioavailability and anticancer efficacy against triple negative breast cancer. J Drug Deliv Sci Technol 65:102665. https://doi.org/10.1016/j.jddst.2021.102665

    Article  CAS  Google Scholar 

  303. Guney Eskiler G, Cecener G, Egeli U, Tunca B (2018) Synthetically Lethal BMN 673 (Talazoparib) Loaded Solid Lipid Nanoparticles for BRCA1 Mutant Triple Negative Breast Cancer. Pharm Res 35(11):218. https://doi.org/10.1007/s11095-018-2502-6

    Article  CAS  PubMed  Google Scholar 

  304. Siddhartha VT, Pindiprolu SKSS, Chintamaneni PK, Tummala S, Nandha Kumar S (2018) RAGE receptor targeted bioconjuguate lipid nanoparticles of diallyl disulfide for improved apoptotic activity in triple negative breast cancer: in vitro studies. Artif Cells Nanomedicine Biotechnol 46(2):387–397 https://doi.org/10.1080/21691401.2017.1313267.

  305. Kothari IR, Mazumdar S, Sharma S, Italiya K, Mittal A, Chitkara D (2019) Docetaxel and alpha-lipoic acid co-loaded nanoparticles for cancer therapy. Ther Deliv 10(4):227–240. https://doi.org/10.4155/tde-2018-0074

    Article  CAS  PubMed  Google Scholar 

  306. Pindiprolu SKSS, Chintamaneni PK, Krishnamurthy PT, Ratna Sree Ganapathineedi K (2019) Formulation-optimization of solid lipid nanocarrier system of STAT3 inhibitor to improve its activity in triple negative breast cancer cells. Drug Dev Ind Pharm 45(2):304–313 https://doi.org/10.1080/03639045.2018.1539496

  307. Pindiprolu SKSS, Krishnamurthy PT, Ghanta VR, Chintamaneni PK (2020) Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine 15(16):1551–1565 https://doi.org/10.2217/nnm-2020-0003

  308. Zhang T et al (2017) Dual-targeted hybrid nanoparticles of synergistic drugs for treating lung metastases of triple negative breast cancer in mice. Acta Pharmacol Sin 38(6):835–847. https://doi.org/10.1038/aps.2016.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Zhou Z, Kennell C, Lee J-Y, Leung Y-K, Tarapore P (2017) Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. Nanomedicine Nanotechnology Biol Med 13(2):403–410. https://doi.org/10.1016/j.nano.2016.07.016

    Article  CAS  Google Scholar 

  310. Garg NK et al (2017) Functionalized Lipid-Polymer Hybrid Nanoparticles Mediated Codelivery of Methotrexate and Aceclofenac: A Synergistic Effect in Breast Cancer with Improved Pharmacokinetics Attributes. Mol Pharm 14(6):1883–1897. https://doi.org/10.1021/acs.molpharmaceut.6b01148

    Article  CAS  PubMed  Google Scholar 

  311. Naseri Z, Kazemi Oskuee R, Jaafari MR, Forouzandeh M (2018) Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine 13:7727–7747 https://doi.org/10.2147/IJN.S182384

  312. Gong C et al (2019) Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnology 17(1):93. https://doi.org/10.1186/s12951-019-0526-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Yu M et al (2019) Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci 110(10):3173–3182. https://doi.org/10.1111/cas.14181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Pedro IDR et al (2019) Optimization and in vitro/in vivo performance of paclitaxel-loaded nanostructured lipid carriers for breast cancer treatment. J Drug Deliv Sci Technol 54:101370. https://doi.org/10.1016/j.jddst.2019.101370

    Article  CAS  Google Scholar 

  315. Zhang Q et al (2019) Construction and in vitro and in vivo evaluation of folic acid-modified nanostructured lipid carriers loaded with paclitaxel and chlorin e6. Int J Pharm 569:118595. https://doi.org/10.1016/j.ijpharm.2019.118595

    Article  CAS  PubMed  Google Scholar 

  316. Lages EB et al (2020) Co-delivery of doxorubicin, docosahexaenoic acid, and α-tocopherol succinate by nanostructured lipid carriers has a synergistic effect to enhance antitumor activity and reduce toxicity. Biomed Pharmacother 132:110876. https://doi.org/10.1016/j.biopha.2020.110876

    Article  CAS  PubMed  Google Scholar 

  317. Gadag S et al (2021) Development and preclinical evaluation of microneedle-assisted resveratrol loaded nanostructured lipid carriers for localized delivery to breast cancer therapy. Int J Pharm 606:120877. https://doi.org/10.1016/j.ijpharm.2021.120877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Rwei AY, Lee J-J, Zhan C et al (2020) Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proc Natl Acad Sci USA 117(49):31197–31206. https://doi.org/10.1073/pnas.2011843117

    Article  Google Scholar 

  319. Zhang X, Dai Z, Jin Z et al (2020) Enhancing Triple-Negative Breast Cancer Immunotherapy by ICP-MS-Instructed pH-Responsive PD-L1-Targeted Liposome. Nano Lett 20(11):8013–8023. https://doi.org/10.1021/acs.nanolett.0c03516

    Article  CAS  Google Scholar 

  320. Zuo T, Gong Y, Chen Z et al (2021) A Small-Sized Tumor Microenvironment-Responsive Nanodrug for Deep Penetration and Antimetastasis Therapy. Small 17(8):2006813. https://doi.org/10.1002/smll.202006813

    Article  CAS  Google Scholar 

  321. Cheng L, He W, Gong H et al (2020) PEGylated Micelle Nanoparticles Encapsulating ICG for Photothermal Therapy in Colorectal Cancer. Bioconjug Chem 31(6):1924–1932. https://doi.org/10.1021/acs.bioconjchem.0c00235

    Article  Google Scholar 

  322. El-Sayed A, Khalafallah S, Adel MM, Elkhodiry A (2020) Enhancement of the cytotoxicity of anti-cancer drugs using stable nano-sized lipid carriers. Drug Deliv Transl Res 10(3):718–732. https://doi.org/10.1007/s13346-020-00724-w

    Article  Google Scholar 

  323. Gao S, Tang G, Hua D et al (2020) Systemic immune-inflammation index (SII) and platelet-to-lymphocyte ratio (PLR) are associated with prognosis of epithelial ovarian cancer. Gynecol Oncol 157(1):215–220. https://doi.org/10.1016/j.ygyno.2020.02.012

    Article  Google Scholar 

  324. Liu X, Wang X, Zheng Y et al (2021) Nanocarriers for Ferroptosis Therapy: A Strategy for Precision Medicine in Cancer Treatment. Biomater Sci 9(7):2347–2364. https://doi.org/10.1039/d0bm01722a

    Article  Google Scholar 

  325. Zheng S, Gong Z, Cheng Q et al (2020) A novel alginate-hydrogel encapsulated nano-liposome platform for local administration of anticancer drugs to brain tumors. Drug Deliv Transl Res 10(6):1673–1681. https://doi.org/10.1007/s13346-020-00760-6

    Article  Google Scholar 

  326. Huang C, Zhang H, Bai L et al (2021) Exploring Mechanisms of ASO Delivery and Distribution in Solid Tumors for Optimized ASO Therapeutics. Adv Sci (Weinh) 8(6):2002985. https://doi.org/10.1002/advs.202002985

    Article  Google Scholar 

  327. Kang JH, Toita R, Murata M et al (2020) Extracellular vesicle mimetics technology for extracellular vesicle purification, exosome engineering, and exosome-mimetics drug delivery. Biotechnol Bioeng 117(12):3873–3887. https://doi.org/10.1002/bit.27542

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

This work received no associated funding.

Author information

Authors and Affiliations

Authors

Contributions

SM contributed to the conception and design of this review and the completion of the figures and tables. VS contributed to the making cover figure and doing work on plagiarism. GP and NJ and CA contributed to the reading of the article and final approval of the submitted review. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gautam Patel or Nirav Joshi.

Ethics declarations

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Ethical Statement

Not applicable for both human and animal studies.

Conflict of interest

The authors of this review affirm that they carried out the study without any affiliations or financial associations that could be perceived as possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, S., Shah, V., Patel, G. et al. A holistic review of recent advances in nano-based drug delivery systems for the treatment of triple-negative breast cancer (TNBC). J Nanopart Res 26, 87 (2024). https://doi.org/10.1007/s11051-024-06000-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06000-8

Keywords

Navigation