Skip to main content

Advertisement

Log in

Reversion of Multidrug Resistance by Co-Encapsulation of Doxorubicin and Metformin in Poly(lactide-co-glycolide)-d-α-tocopheryl Polyethylene Glycol 1000 Succinate Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

P-glycoprotein (P-gp) mediated multidrug resistance (MDR) has been recognized as the main obstacle against successful cancer treatment. To address this problem, co-encapsulated doxorubicin (DOX) and metformin (Met) in a biodegradable polymer composed of poly(lactide-co-glycolide) (PLGA) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was prepared. We reported in our previous study that Met inhibits P-gp in DOX resistant breast cancer (MCF-7/DOX) cells. TPGS is a bioactive compound which has also been shown to inhibit P-gp, further to its pharmaceutical advantages.

Methods

The DOX/Met loaded PLGA-TPGS nanoparticles (NPs) were prepared by double emulsion method and characterized for their surface morphology, size and size distribution, and encapsulation efficiencies of drugs in NPs.

Results

All NPs were found to be spherical-shaped with the size distribution below 100 nm and encapsulation efficiencies were 42.26 ± 2.14% for DOX and 7.04 ± 0.52% for Met. Dual drug loaded NPs showed higher cytotoxicity and apoptosis in MCF-7/DOX cells in comparison to corresponding free drugs. The higher cytotoxicity of dual drug loaded NPs was attributed to the enhanced intracellular drug accumulation due to enhanced cellular uptake and reduced drug efflux which was obtained by combined effects of Met and TPGS in reducing cellular ATP content and inhibiting P-gp.

Conclusion

Simultaneous delivery of DOX and Met via PLGA-TPGS NPs would be a promising approach to overcome MDR in breast cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of Variance

DCM:

Dichlromethane

DMSO:

Dimethyl Solfoxide

DOX:

Doxorubicin

FBS:

Fetal Bovine Serum

FITC:

Fluorescein Isothiocyanate

MDR:

Multidrug resistance

Met:

Metformin

MFI:

Mean Fluorescence Intensity

mTOR:

Mammalian Target of Rapamycin

PBS:

Phosphate-Buffered Saline

PI:

Propidium Iodide

PI3K:

Phosphatidylinositol 3-Kinases

PLGA:

Poly(lactide-co-glycolide) acetate

Rho123:

Rhodamine 123

TPGS:

D-α-tocopheryl polyethylene glycol 1000 succinate

References

  1. Gottesman MM, Lavi O, Hall MD, Gillet JP. Toward a better understanding of the complexity of Cancer drug resistance. Annu Rev Pharmacol Toxicol. 2016;56:85–102.

    Article  PubMed  CAS  Google Scholar 

  2. Yousefi B, Samadi N, Baradaran B, Shafiei-Irannejad V, Zarghami N. Peroxisome proliferator-activated receptor ligands and their role in chronic myeloid leukemia: therapeutic strategies. Chem Biol Drug Des. 2016;88(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  3. Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett. 2006;580(4):998–1009.

    Article  PubMed  CAS  Google Scholar 

  4. Shafiei-Irannejad V, Samadi N, Yousefi B, Salehi R, Velaei K, Zarghami N. Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp-overexpressing MCF-7 cells. Chem Biol Drug Des. 2017;91(1):269–76.

    Article  PubMed  CAS  Google Scholar 

  5. Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Zarghami N. New insights into antidiabetic drugs: possible applications in Cancer treatment. Chem Biol Drug Des. 2017;90(6):1056–66.

    Article  PubMed  CAS  Google Scholar 

  6. Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin is an AMP kinase–dependent growth inhibitor for breast cancer cells. Cancer Res. 2006;66(21):10269–73.

    Article  PubMed  CAS  Google Scholar 

  7. Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov. 2012;2(9):778–90.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang Z, Feng S-S. Nanoparticles of poly (lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials. 2006;27(2):262–70.

    Article  PubMed  CAS  Google Scholar 

  9. Eatemadi A, Darabi M, Afraidooni L, Zarghami N, Daraee H, Eskandari L, et al. Comparison, synthesis and evaluation of anticancer drug-loaded polymeric nanoparticles on breast cancer cell lines. Artif Cells Nanomed Biotechnol. 2016;44(3):1008–17.

    PubMed  CAS  Google Scholar 

  10. Rahimi M, Shojaei S, Safa KD, Ghasemi Z, Salehi R, Yousefi B, et al. Biocompatible magnetic tris (2-aminoethyl) amine functionalized nanocrystalline cellulose as a novel nanocarrier for anticancer drug delivery of methotrexate. New J Chem. 2017;41(5):2160–8.

    Article  CAS  Google Scholar 

  11. Müller M, Vörös J, Csucs G, Walter E, Danuser G, Merkle H, et al. Surface modification of PLGA microspheres. J Biomed Mater Res. 2003;66((1):55–61.

    Article  CAS  Google Scholar 

  12. Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, Javidfar S, Lotfi-Attari J, Sadeghzadeh H, et al. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif Cells Nanomed Biotechnol 2017:1–9.

  13. Nejati-Koshki K, Mesgari M, Ebrahimi E, Abbasalizadeh F, Fekri Aval S, Khandaghi AA, et al. Synthesis and in vitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA-PEG6000 copolymers in treatment of lung cancer. J Microencapsul. 2014;31(8):815–23.

    Article  PubMed  CAS  Google Scholar 

  14. Mu L, Feng S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Control Release. 2003;86(1):33–48.

    Article  PubMed  CAS  Google Scholar 

  15. Shieh M-J, Hsu C-Y, Huang L-Y, Chen H-Y, Huang F-H, Lai P-S. Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. J Control Release. 2011;152(3):418–25.

    Article  PubMed  CAS  Google Scholar 

  16. Anganeh MT, Mirakabad FST, Izadi M, Zeighamian V, Badrzadeh F, Salehi R, et al. The comparison between effects of free curcumin and curcumin loaded PLGA-PEG on telomerase and TRF1 expressions in calu-6 lung cancer cell line. Int J Biosci. 2014;4:134–45.

    Google Scholar 

  17. Li F, Sun J, Zhu H, Wen X, Lin C, Shi D. Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surf B Biointerfaces. 2011;88(1):58–62.

    Article  PubMed  CAS  Google Scholar 

  18. Tao W, Zeng X, Liu T, Wang Z, Xiong Q, Ouyang C, et al. Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater. 2013;9(11):8910–20.

    Article  PubMed  CAS  Google Scholar 

  19. Masarudin MJ, Cutts SM, Evison BJ, Phillips DR, Pigram PJ. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol Sci Appl. 2015;8:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Şimşek B, Ultav G, Korucu H, Yartaşı A. Improvement of the graphene oxide dispersion properties with the use of TOPSIS based Taguchi application. Period Polytech Chem Eng. 2018;

  21. Gupta PK, Brazeau GA. Injectable drug development: techniques to reduce pain and irritation. CRC Press 1999.

  22. Song X, Zhao Y, Wu W, Bi Y, Cai Z, Chen Q, et al. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm. 2008;350(1–2):320–9.

    Article  PubMed  CAS  Google Scholar 

  23. Valot P, Baba M, Nedelec J-M, Sintes-Zydowicz N. Effects of process parameters on the properties of biocompatible ibuprofen-loaded microcapsules. Int J Pharm. 2009;369(1–2):53–63.

    Article  PubMed  CAS  Google Scholar 

  24. Wu S-W, Hopkins WK. Characteristics of d-α-tocopheryl PEG 1000 succinate for applications as an absorption enhancer in drug delivery systems. Pharm Technol. 1999;23(10):52–68.

    CAS  Google Scholar 

  25. Pierotti M, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, et al. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene. 2013;32(12):1475–87.

    Article  PubMed  CAS  Google Scholar 

  26. Mehta SB, Carpenter JF, Randolph TW. Colloidal instability fosters agglomeration of subvisible particles created by rupture of gels of a monoclonal antibody formed at silicone oil-water interfaces. J Pharm Sci. 2016;105(8):2338–48.

    Article  PubMed  CAS  Google Scholar 

  27. Iyer V, Cayatte C, Guzman B, Schneider-Ohrum K, Matuszak R, Snell A, et al. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants. Hum Vaccin Immunother. 2015;11(7):1853–64.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rahimi M, Safa KD, Alizadeh E, Salehi R. Dendritic chitosan as a magnetic and biocompatible nanocarrier for the simultaneous delivery of doxorubicin and methotrexate to MCF-7 cell line. New J Chem. 2017;41(8):3177–89.

    Article  CAS  Google Scholar 

  29. Schrade A, Mailander V, Ritz S, Landfester K, Ziener U. Surface roughness and charge influence the uptake of nanoparticles: fluorescently labeled Pickering-type versus surfactant-stabilized nanoparticles. Macromol Biosci. 2012;12(11):1459–71.

    Article  PubMed  CAS  Google Scholar 

  30. Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577–91.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang J, Sun J, Chen Q, Gao Y, Li L, Li H, et al. Star-shape copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance. Biomaterials. 2012;33(28):6877–88.

    Article  PubMed  CAS  Google Scholar 

  32. Wempe MF, Wright C, Little JL, Lightner JW, Large SE, Caflisch GB, et al. Inhibiting efflux with novel non-ionic surfactants: rational design based on vitamin E TPGS. Int J Pharm. 2009;370(1):93–102.

    Article  PubMed  CAS  Google Scholar 

  33. Hee Choi Y, Yu A-M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des. 2014;20(5):793–807.

    Article  CAS  Google Scholar 

  34. Tang J, Fu Q, Wang Y, Racette K, Wang D, Liu F. Vitamin E reverses multidrug resistance in vitro and in vivo. Cancer Lett. 2013;336(1):149–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhang Z, Tan S, Feng S-S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

Authors would like to thank Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran for supporting this project (Grant No 5/104/991). The authors declare that they have no conflict of interests regarding the publication of this article, financial and/or otherwise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosratollah Zarghami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiei-Irannejad, V., Samadi, N., Salehi, R. et al. Reversion of Multidrug Resistance by Co-Encapsulation of Doxorubicin and Metformin in Poly(lactide-co-glycolide)-d-α-tocopheryl Polyethylene Glycol 1000 Succinate Nanoparticles. Pharm Res 35, 119 (2018). https://doi.org/10.1007/s11095-018-2404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2404-7

Key Words

Navigation