Skip to main content
Log in

Effect of surfactants on the electrochemical performance of iron hexacyanoferrate prepared by co-precipitation route for aqueous potassium-ion storage

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

As a promising electrode material for electrochemical energy storage, iron hexacyanoferrate (FeHCF) possesses diverse structures and properties that strongly relate to synthetic conditions. In this work, we synthesized FeHCFs by co-precipitation route and studied the influence of two surfactants (sodium citrate and potassium bitartrate) on the material characteristics and K+ storage properties of the resulting FeHCFs. Electrochemical measurements revealed that the FeHCF synthesized in the absence of surfactants exhibited superior performance to those synthesized in the presence of either surfactant due to reduced electrical resistivity and improved diffusion kinetics. The assembled all-solid-state symmetric device delivered an areal capacitance of 3.24 mF cm−2, a wide potential window (1.4 V), an energy density of 3.17 μWh cm−2, and a power density of 315.7 μW cm−2 at a current density of 0.5 mA cm−1, indicating its potential application for energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Grosjean C, Miranda PH, Perrin M, Poggi P (2012) Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sustain Energy Rev 16:1735–1744

    Article  Google Scholar 

  2. Wei X, Wei J, Song Y, Wu D, Liu XD, Chen H, Xiao P, Zhang Y (2021) Potassium mediated Co–Fe-based Prussian blue analogue architectures for aqueous potassium-ion storage. Chem Commun 57:7019–7022

    Article  CAS  Google Scholar 

  3. Zhou A, Cheng W, Wang W, Zhao Q, Xie J, Zhang W, Gao H, Xue L, Li J (2021) Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv Energy Mater 11:2000943

    Article  CAS  Google Scholar 

  4. Yang Y, Zhou J, Wang L, Jiao Z, Xiao M, Huang Q-A, Liu M, Shao Q, Sun X, Zhang J (2022) Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-, Zn-and Al-ion batteries. Nano Energy 99:107424

  5. Imanishi N, Morikawa T, Kondo J, Takeda Y, Yamamoto O, Kinugasa N, Yamagishi T (1999) Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery. J Power Sources 79:215–219

    Article  CAS  Google Scholar 

  6. Wang B, Han Y, Wang X, Bahlawane N, Pan H, Yan M, Jiang Y (2018) Prussian blue analogs for rechargeable batteries. Iscience 3:110–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ge J, Fan L, Rao AM, Zhou J, Lu B (2022) Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat Sustain 5:225–234

    Article  Google Scholar 

  8. Wessells CD, Peddada SV, Huggins RA, Cui Y (2011) Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett 11:5421–5425

    Article  CAS  PubMed  Google Scholar 

  9. Pasta M, Wessells CD, Huggins RA, Cui Y (2012) A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat Commun 3:1149

    Article  PubMed  Google Scholar 

  10. Wu X, Luo Y, Sun M, Qian J, Cao Y, Ai X, Yang H (2015) Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13:117–123

    Article  CAS  Google Scholar 

  11. El-Hady DA, Lyu Y, Zhan S, Yang J, Wang Y, Yang F, Zhao Q, Gu M, Shao M (2022) Vacancy and composition engineering of manganese hexacyanoferrate for sodium-ion storage. ACS Appl Energy Mater 5:8547–8553

    Article  CAS  Google Scholar 

  12. Wei C, Fu X-Y, Zhang L-L, Liu J, Sun P-P, Gao L, Chang K-J, Yang X-L (2021) Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping. Chem Eng J 421:127760

    Article  CAS  Google Scholar 

  13. Neale ZG, Liu C, Cao G (2020) Effect of synthesis pH and EDTA on iron hexacyanoferrate for sodium-ion batteries. Sustain Energy Fuels 4(6):2884–2891

  14. Shi L, Bi X, Newcomer E, Hall DM, Gorski CA, Galal A, Logan BE (2022) Co-precipitation synthesis control for sodium ion adsorption capacity and cycle life of copper hexacyanoferrate electrodes in battery electrode deionization. Chem Eng J 435:135001

    Article  CAS  Google Scholar 

  15. Du Y, Ding X, Han M, Zhu M (2020) Morphology and composition regulation of FeCoNi Prussian blue analogues to advance in the catalytic performances of the derivative ternary transition-metal phosphides for OER. ChemCatChem 12:4339–4345

    Article  CAS  Google Scholar 

  16. Kim J, Yi S-H, Li L, Thu TV, Chun S-E (2022) Effect of valence state of cobalt in cobalt hexacyanoferrate coprecipitated at different temperatures on electrochemical behavior. Int J Energy Res 46:22717–22729

    Article  CAS  Google Scholar 

  17. Camacho PS, Wernert R, Duttine M, Wattiaux A, Rudola A, Balaya P, Fauth F, Berthelot R, Monconduit L, Carlier D (2021) Impact of synthesis conditions in Na-Rich Prussian blue analogues. ACS Appl Mater Interfaces 13:42682–42692

    Article  CAS  PubMed  Google Scholar 

  18. Tang Y, Li W, Feng P, Zhou M, Wang K, Wang Y, Zaghib K, Jiang KJAFM (2020) High‐performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium‐ion batteries. Adv Funct Mater 30:1908754

  19. Cao T, Zhang F, Chen M, Shao T, Li Z, Xu Q, Cheng D, Liu H, Xia Y (2021) Cubic manganese potassium hexacyanoferrate regulated by controlling of the water and defects as a high-capacity and stable cathode material for rechargeable aqueous zinc-ion batteries. ACS Appl Mater Interfaces 13:26924–26935

    Article  CAS  PubMed  Google Scholar 

  20. Vittal R, Gomathi H, Rao GP (2000) Influence of a cationic surfactant on the modification of electrodes with nickel hexacyanoferrate surface films. Electrochim Acta 45:2083–2093

    Article  CAS  Google Scholar 

  21. Hu M, Ishihara S, Ariga K, Imura M, Yamauchi Y (2013) Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self‐assembly to periodic arrangements. Chem Eur J 19:1882–1885

  22. Shen Y, Guo S-G, Du F, Yuan X-B, Zhang Y, Hu J, Shen Q, Luo W, Alsaedi A, Hayat TJN (2019) Prussian blue analogue-derived Ni and Co bimetallic oxide nanoplate arrays block-built from porous and hollow nanocubes for the efficient oxygen evolution reaction. Nanoscale 11:11765–11773

  23. Feng Y, Yu X-Y, Paik UJCC (2016) Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chem Comm 52:1633–1636

  24. Van Nguyen T, Van Thuy V, Thao VD, Hatsukano M, Higashimine K, Maenosono S, Chun S-E, Thu TV (2020) Facile synthesis of Mn-doped NiCo2O4 nanoparticles with enhanced electrochemical performance for a battery-type supercapacitor electrode. Dalton Trans 49:6718–6729

    Article  CAS  PubMed  Google Scholar 

  25. Wang W, Gang Y, Peng J, Hu Z, Yan Z, Lai W, Zhu Y, Appadoo D, Ye M, Cao Y (2022) Effect of eliminating water in Prussian blue cathode for sodium-ion batteries. Adv Func Mater 32:2111727

    Article  CAS  Google Scholar 

  26. Thieu QQV, Hoang H, Nguyen DQ, Le MLP, Tran NHT, Kim IT, Nguyen TL (2021) Enhancing electrochemical performance of sodium Prussian blue cathodes for sodium-ion batteries via optimizing alkyl carbonate electrolytes. Ceram Int 47:30164–30171

    Article  Google Scholar 

  27. Thu TV, Van Nguyen T, Le XD, Le TS, Van Thuy V, Huy TQ, Truong QD (2019) Graphene-MnFe2O4-polypyrrole ternary hybrids with synergistic effect for supercapacitor electrode. Electrochim Acta 314:151–160

    Article  CAS  Google Scholar 

  28. Van Nguyen T, Son LT, Thao PM, Phat DT, Lan NT, Van Nghia N, Thu TV (2020) One-step solvothermal synthesis of mixed nickel–cobalt sulfides as high-performance supercapacitor electrode materials. J Alloy Compd 831:154921

    Article  CAS  Google Scholar 

  29. Kim T, Choi W, Shin H-C, Choi J-Y, Kim JM, Park M-S, Yoon W-S (2020) Applications of voltammetry in lithium ion battery research. J Electroche Sci Technol 11:14–25

    Article  CAS  Google Scholar 

  30. Luo M, Dou Y, Kang H, Ma Y, Ding X, Liang B, Ma B, Li L (2015) A novel interlocked Prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes. J Solid State Electrochem 19:1621–1631

    Article  CAS  Google Scholar 

  31. Lu K, Song B, Gao X, Dai H, Zhang J, Ma H (2016) High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors. J Power Sources 303:347–353

    Article  CAS  Google Scholar 

  32. Chen J, Huang K, Liu S (2008) Insoluble metal hexacyanoferrates as supercapacitor electrodes. Electrochem Commun 10:1851–1855

    Article  CAS  Google Scholar 

  33. Zhang X, He P, Zhang X, Li C, Liu H, Wang S, Dong F (2018) Manganese hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: facile synthesis, characterization and application to high performance supercapacitors. Electrochim Acta 276:92–101

    Article  CAS  Google Scholar 

  34. Song Z, Liu W, Zhou Q, Zhang L, Zhang Z, Liu H, Du J, Chen J, Liu G, Zhao ZJJOPS (2020) Cobalt hexacyanoferrate/MnO2 nanocomposite for asymmetrical supercapacitors with enhanced electrochemical performance and its charge storage mechanism. J Power Sources 465:228266

Download references

Funding

The authors acknowledge the National Foundation for Science and Technology Development (NAFOSTED) for financial support (Grant No. 103.02–2020.31).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, T.V.T.; methodology, all; formal analysis, all; writing—original draft preparation, V.T.T. and T.V.T.; writing-review and editing, T.V.T and S.C.; supervision, T.V.T; funding acquisition, T.V.T.

Corresponding author

Correspondence to Tran Viet Thu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Thuy, V., Trang, V.T., Chun, S. et al. Effect of surfactants on the electrochemical performance of iron hexacyanoferrate prepared by co-precipitation route for aqueous potassium-ion storage. J Nanopart Res 26, 77 (2024). https://doi.org/10.1007/s11051-024-05984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05984-7

Keywords

Navigation