Skip to main content
Log in

Upconversion nanoparticles and their potential in the realm of biomedical sciences and theranostics

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Interdisciplinary sciences have paved the way for the creation of new technologies that could potentially alter how things were conventionally done. Biotechnology and nanotechnology have resulted in the creation of various techniques, one of which is upconversion nanoparticles (UCNPs), which can be conjugated with biomaterials for added functionality. UCNPs work based on optical phenomena referred to as anti-Stoke shift, wherein the nanoparticle absorbs light of a high wavelength (lower energy) and emits light having a lower wavelength (higher energy). This ability to provide luminescent signals when irradiated with near-infrared (NIR) light sources is particularly useful as a consequence of its minimal toxicity and high depth of penetration. When coupled with the appropriate biomaterials, the UCNPs can conjugate with the target under study and via quenching/luminescence recovery and quantitative and qualitative tests can be performed relating to the target molecule, in vivo. These UCNP-nanomaterial structures have proven to be very useful in the in vivo image detection, diagnostic, therapeutic as well as combined approaches for disease treatment, drug delivery, disease diagnosis etc. This review aims at providing an in-depth explanation about the origins of UCNPs, how they may be synthesized, their mechanisms of upconversion (UC), their adaptability and flexibility under in vivo conditions, and the future of the field.

Graphical Abstract

Overall representation of Upconverting Nanoparticle (UCNP) synthesis followed by the currently researched/applied modes of utilization for the same. The drug delivery aspect involves loading the porous layer over the UCNP with the required drug while the bio-imaging and therapeutic application (via photothermal therapy and/or photodynamic therapy) involves irradiation of the nanoparticles by tissue-penetrating near-infrared radiation (NIR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Feynman RP (2011) There’s plenty of room at the bottom. Reson 16:890–905. https://doi.org/10.1007/S12045-011-0109-X

    Article  Google Scholar 

  2. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2020) The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules 25:112. https://doi.org/10.3390/MOLECULES25010112

    Article  CAS  Google Scholar 

  3. Sirkka N, Lyytikäinen A, Savukoski T, Soukka T (2016) Upconverting nanophosphors as reporters in a highly sensitive heterogeneous immunoassay for cardiac troponin I. Anal Chim Acta 925:82–87. https://doi.org/10.1016/J.ACA.2016.04.027

    Article  CAS  PubMed  Google Scholar 

  4. Li Z, Zhang Y, La H, Zhu R, El-Banna G, Wei Y, Han G (2015) Upconverting NIR photons for bioimaging. Nanomater 5:2148–2168. https://doi.org/10.3390/NANO5042148

    Article  CAS  Google Scholar 

  5. Shen J, Chen G, Vu AM, Fan W, Bilsel OS, Chang CC, Han G (2013) Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv Opt Mater 1:644–650. https://doi.org/10.1002/ADOM.201300160

    Article  Google Scholar 

  6. Gulzar A, Xu J, Yang D, Xu L, He F, Gai S, Yang P (2018) Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalt Trans 47:3931–3939. https://doi.org/10.1039/C7DT04141A

    Article  CAS  Google Scholar 

  7. Wen S et al (2018) Advances in highly doped upconversion nanoparticles. Nat Commun 2018 9:1 9:1–12

  8. Du K, Feng J, Gao X, Zhang H (2022) Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications. Light Sci Appl 2022 11:1 11:1–23

  9. Jethva P, Momin M, Khan T, Omri A (2022) Lanthanide-doped upconversion luminescent nanoparticles-evolving role in bioimaging, biosensing, and drug delivery. Materials (Basel) 15

  10. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4:710–711. https://doi.org/10.1038/NNANO.2009.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu S, Xu S, Zhu Y, Xu W, Zhou P, Zhou C, Dong B, Song H (2014) A novel upconversion, fluorescence resonance energy transfer biosensor (FRET) for sensitive detection of lead ions in human serum. Nanoscale 6:12573–12579. https://doi.org/10.1039/C4NR03092C

    Article  CAS  PubMed  Google Scholar 

  12. Thakur MK, Gupta A, Fakhri MY, Chen RS, Wu CT, Lin KH, Chattopadhyay S (2019) Optically coupled engineered upconversion nanoparticles and graphene for a high responsivity broadband photodetector. Nanoscale 11:9716–9725. https://doi.org/10.1039/C8NR10280E

    Article  CAS  PubMed  Google Scholar 

  13. Johnson NJJ, Sangeetha NM, Boyer JC, Van Veggel FCJM (2010) Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4: Yb 3+/Er3+ nanoparticles. Nanoscale 2:771–777. https://doi.org/10.1039/B9NR00379G

    Article  CAS  PubMed  Google Scholar 

  14. Xiong LQ, Chen ZG, Yu MX, Li FY, Liu C, Huang CH (2009) Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 30:5592–5600. https://doi.org/10.1016/J.BIOMATERIALS.2009.06.015

    Article  CAS  PubMed  Google Scholar 

  15. Ansari AA, Parchur AK, Thorat ND, Chen G (2021) New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coord Chem Rev 440:213971. https://doi.org/10.1016/J.CCR.2021.213971

    Article  CAS  Google Scholar 

  16. DaCosta MV, Doughan S, Han Y, Krull UJ (2014) Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review. Anal Chim Acta 832:1–33. https://doi.org/10.1016/J.ACA.2014.04.030

    Article  CAS  PubMed  Google Scholar 

  17. Lee J, Lee H, Kang M, Baday M, Lee SH (2022) High spatial and temporal resolution using upconversion nanoparticles and femtosecond pulsed laser in single particle tracking. Curr Appl Phys 44:40–45. https://doi.org/10.1016/J.CAP.2022.09.002

    Article  Google Scholar 

  18. Del Rosal B, Jaque D (2019) Upconversion nanoparticles for in vivo applications: limitations and future perspectives. Methods Appl Fluoresc 7:022001. https://doi.org/10.1088/2050-6120/AB029F

    Article  PubMed  Google Scholar 

  19. Joubert MF (1999) Photon avalanche upconversion in rare earth laser materials. Opt Mater (Amst) 11:181–203. https://doi.org/10.1016/S0925-3467(98)00043-3

    Article  CAS  Google Scholar 

  20. Wang M, Abbineni G, Clevenger A, Mao C, Xu S (2011) Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed Nanotechnol Biol Med 7:710–729. https://doi.org/10.1016/J.NANO.2011.02.013

    Article  CAS  Google Scholar 

  21. Bloembergen N (1959) Solid state infrared quantum counters. Phys Rev Lett 2:84–85. https://doi.org/10.1103/PHYSREVLETT.2.84

    Article  CAS  Google Scholar 

  22. Wilhelm S, Kaiser M, Würth C, Heiland J, Carrillo-Carrion C, Muhr V, Wolfbeis OS, Parak WJ, Resch-Genger U, Hirsch T (2015) Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale 7:1403–1410. https://doi.org/10.1039/C4NR05954A

    Article  CAS  PubMed  Google Scholar 

  23. Chen J, Zhao JX (2012) Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors 12:2414–2435. https://doi.org/10.3390/S120302414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hong E, Liu L, Bai L, Xia C, Gao L, Zhang L, Wang B (2019) Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Mater Sci Eng C 105:110097. https://doi.org/10.1016/J.MSEC.2019.110097

    Article  CAS  Google Scholar 

  25. Gee A, Xu X (2018) Surface functionalisation of upconversion nanoparticles with different moieties for biomedical applications. Surfaces 1:96–121. https://doi.org/10.3390/SURFACES1010009

    Article  Google Scholar 

  26. Lin C, Berry MT, Anderson R, Smith S, May PS (2009) Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment. Chem Mater 21:3406–3413. https://doi.org/10.1021/CM901094M

    Article  CAS  Google Scholar 

  27. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–173. https://doi.org/10.1021/CR020357G

    Article  CAS  PubMed  Google Scholar 

  28. Chivian JS, Case WE, Eden DD (1979) The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters. Appl Phys Lett 35:124–125. https://doi.org/10.1063/1.91044

    Article  CAS  Google Scholar 

  29. Arai MS, de Camargo ASS (2021) Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. Nanoscale Adv 3:5135–5165. https://doi.org/10.1039/D1NA00327E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chemie - Int Ed 50:5808–5829. https://doi.org/10.1002/ANIE.201005159

    Article  CAS  Google Scholar 

  31. Yu Z, Eich C, Cruz LJ (2020) Recent advances in rare-earth-doped nanoparticles for NIR-II imaging and cancer theranostics. Front Chem 8:496. https://doi.org/10.3389/FCHEM.2020.00496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sedlmeier A, Gorris HH (2015) Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev 44:1526–1560. https://doi.org/10.1039/C4CS00186A

    Article  CAS  PubMed  Google Scholar 

  33. Tan H, Yu L, Gao F, Liao W, Wang W, Zeng W (2013) Surface modification: how nanoparticles assemble to molecular imaging probes. J Nanoparticle Res 15:2100. https://doi.org/10.1007/S11051-013-2100-9

    Article  Google Scholar 

  34. Zhang D, Peng R, Liu W, Donovan MJ, Wang L, Ismail I, Li J, Li J, Qu F, Tan W (2021) Engineering DNA on the surface of upconversion nanoparticles for bioanalysis and therapeutics. ACS Nano 15:17257–17274. https://doi.org/10.1021/ACSNANO.1C08036

    Article  CAS  PubMed  Google Scholar 

  35. González-Béjar M, Francés-Soriano L, Pérez-Prieto J (2016) Upconversion nanoparticles for bioimaging and regenerative medicine. Front Bioeng Biotechnol 4:47. https://doi.org/10.3389/FBIOE.2016.00047

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chatterjee DK, Rufaihah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29:937–943. https://doi.org/10.1016/J.BIOMATERIALS.2007.10.051

    Article  CAS  PubMed  Google Scholar 

  37. Mello GPC, Simões EFC, Crista DMA, Leitão JMM, Pinto da Silva L, Esteves da Silva JCG (2019) Glucose sensing by fluorescent nanomaterials. Crit Rev Anal Chem 49:542–552. https://doi.org/10.1080/10408347.2019.1565984

    Article  CAS  PubMed  Google Scholar 

  38. Liu Y, Tu D, Zheng W, Lu L, You W, Zhou S, Huang P, Li R, Chen X (2018) A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Res 11:3164–3174. https://doi.org/10.1007/S12274-017-1721-1

    Article  CAS  Google Scholar 

  39. Ali M, Sajid M, Khalid MAU, Kim SW, Lim JH, Huh D, Choi KH (2020) A fluorescent lateral flow biosensor for the quantitative detection of vaspin using upconverting nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc 226:117610. https://doi.org/10.1016/J.SAA.2019.117610

    Article  CAS  Google Scholar 

  40. Martiskainen I, Juntunen E, Salminen T, Vuorenpää K, Bayoumy S, Vuorinen T, Khanna N, Pettersson K, Batra G, Talha SM (2021) Double-antigen lateral flow immunoassay for the detection of anti-hiv-1 and-2 antibodies using upconverting nanoparticle reporters. Sensors (Switzerland) 21:1–17. https://doi.org/10.3390/S21020330

    Article  Google Scholar 

  41. Fang RH, Hu CMJ, Luk BT, Gao W, Copp JA, Tai Y, O’Connor DE, Zhang L (2014) Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14:2181–2188. https://doi.org/10.1021/NL500618U

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fang H, Li M, Liu Q, Gai Y, Yuan L, Wang S, Zhang X, Ye M, Zhang Y, Gao M, Lan X, Hou Y (2020) Ultra-sensitive nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast cancer. Nano-Micro Lett 12:62. https://doi.org/10.1007/S40820-020-0396-4

    Article  CAS  Google Scholar 

  43. Kamaraj N, Sundaresan S, Devaraj A (2017) DDA loaded PCL nanoparticles enhances the oral bioavailability of DDA in diabetes induced experimental rats. Int J Pharm Pharm Sci 9:198. https://doi.org/10.22159/IJPPS.2017V9I4.16860

    Article  Google Scholar 

  44. Norpi ASM, Nordin ML, Ahmad N, Katas H, Fuaad AAHA, Sukri A, Marasini N, Azmi F (2022) New modular platform based on multi-adjuvanted amphiphilic chitosan nanoparticles for efficient lipopeptide vaccine delivery against group A streptococcus. Asian J Pharm Sci 17:435–446. https://doi.org/10.1016/J.AJPS.2022.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dong S, Ma S, Chen H, Tang Z, Song W, Deng M (2022) Nucleobase-crosslinked poly(2-oxazoline) nanoparticles as paclitaxel carriers with enhanced stability and ultra-high drug loading capacity for breast cancer therapy. Asian J Pharm Sci 17:571–582. https://doi.org/10.1016/J.AJPS.2022.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liang G, Wang H, Shi H, Wang H, Zhu M, Jing A, Li J, Li G (2020) Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotechnology 18:154. https://doi.org/10.1186/S12951-020-00713-3

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jalani G, Tam V, Vetrone F, Cerruti M (2018) Seeing, targeting and delivering with upconverting nanoparticles. J Am Chem Soc 140:10923–10931. https://doi.org/10.1021/JACS.8B03977

    Article  CAS  PubMed  Google Scholar 

  48. Chu H, Cao T, Dai G, Liu B, Duan H, Kong C, Tian N, Hou D, Sun Z (2021) Recent advances in functionalized upconversion nanoparticles for light-activated tumor therapy. RSC Adv 11:35472–35488. https://doi.org/10.1039/D1RA05638G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan J, Li C, Liu J (2021) Remotely ameliorating blood glucose levels in type 2 diabetes via a near-infrared laser. Adv Funct Mater 31:2007215. https://doi.org/10.1002/ADFM.202007215

    Article  CAS  Google Scholar 

  50. Wang C, Cheng L, Liu Z (2013) Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 3:317–330. https://doi.org/10.7150/THNO.5284

    Article  PubMed  PubMed Central  Google Scholar 

  51. Feng C, Zhu D, Chen L, Lu Y, Liu J, Kim NY, Liang S, Zhang X, Lin Y, Ma Y, Dong C (2019) Targeted delivery of chlorin E6 via redox sensitive diselenide-containing micelles for improved photodynamic therapy in cluster of differentiation 44-overexpressing breast cancer. Front Pharmacol 10:369. https://doi.org/10.3389/FPHAR.2019.00369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen X, Zhao Z, Jiang M, Que D, Shi S, Zheng N (2013) Preparation and photodynamic therapy application of NaYF4:Yb, Tm-NaYF4:Yb, Er multifunctional upconverting nanoparticles. New J Chem 37:1782–1788. https://doi.org/10.1039/C3NJ00065F

    Article  CAS  Google Scholar 

  53. Dibaba ST, Xie Y, Xi W, Bednarkiewicz A, Ren W, Sun L (2022) Nd3+-sensitized upconversion nanoparticle coated with antimony shell for bioimaging and photothermal therapy in vitro using single laser irradiation. J Rare Earths 40:862–869. https://doi.org/10.1016/J.JRE.2021.05.015

    Article  CAS  Google Scholar 

  54. Nguyen PD, Son SJ, Min J (2014) Upconversion nanoparticles in bioassays, optical imaging and therapy. J Nanosci Nanotechnol 14:157–174. https://doi.org/10.1166/JNN.2014.8894

    Article  CAS  PubMed  Google Scholar 

  55. Gong Y, Zheng Y, Jin B, You M, Wang J, Li XJ, Lin M, Xu F, Li F (2019) A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta 201:126–133. https://doi.org/10.1016/J.TALANTA.2019.03.105

    Article  CAS  PubMed  Google Scholar 

  56. Lin M, Gao Y, Hornicek F, Xu F, Lu TJ, Amiji M, Duan Z (2015) Near-infrared light activated delivery platform for cancer therapy. Adv Colloid Interface Sci 226:123–137. https://doi.org/10.1016/J.CIS.2015.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lai WF, Rogach AL, Wong WT (2017) Molecular design of upconversion nanoparticles for gene delivery. Chem Sci 8:7339–7358. https://doi.org/10.1039/C7SC02956J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiang S, Zhang Y, Lim KM, Sim EKW, Ye L (2009) NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology 20:155101. https://doi.org/10.1088/0957-4484/20/15/155101

    Article  CAS  PubMed  Google Scholar 

  59. Lin M, Gao Y, Diefenbach TJ, Shen JK, Hornicek FJ, Il PY, Xu F, Lu TJ, Amiji M, Duan Z (2017) Facial layer-by-layer engineering of upconversion nanoparticles for gene delivery: near-infrared-initiated fluorescence resonance energy transfer tracking and overcoming drug resistance in ovarian cancer. ACS Appl Mater Interfaces 9:7941–7949. https://doi.org/10.1021/ACSAMI.6B15321

    Article  CAS  PubMed  Google Scholar 

  60. Chan MH, Chen SP, Chen CW, Chan YC, Lin RJ, Tsai DP, Hsiao M, Chung RJ, Chen X, Liu RS (2018) Single 808 nm laser treatment comprising photothermal and photodynamic therapies by using gold nanorods hybrid upconversion particles. J Phys Chem C 122:2402–2412. https://doi.org/10.1021/ACS.JPCC.7B10976

    Article  CAS  Google Scholar 

  61. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545. https://doi.org/10.1038/NRC1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ding B, Shao S, Yu C, Teng B, Wang M, Cheng Z, Wong KL, Ma P, Lin J (2018) Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy. Adv Mater 30:e1802479. https://doi.org/10.1002/ADMA.201802479

    Article  PubMed  Google Scholar 

  63. Song W, Kuang J, Li CX, Zhang M, Zheng D, Zeng X, Liu C, Zhang XZ (2018) Enhanced immunotherapy based on photodynamic therapy for both primary and lung metastasis tumor eradication. ACS Nano 12:1978–1989. https://doi.org/10.1021/ACSNANO.7B09112

    Article  CAS  PubMed  Google Scholar 

  64. Xu J, Xu L, Wang C, Yang R, Zhuang Q, Han X, Dong Z, Zhu W, Peng R, Liu Z (2017) Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 11:4463–4474. https://doi.org/10.1021/ACSNANO.7B00715

    Article  CAS  PubMed  Google Scholar 

  65. Wang J, Qi J, Jin F, You Y, Du Y, Liu D, Xu X, Chen M, Shu G, Zhu L, Ying X, Ji J, Li W, Du Y (2022) Spatiotemporally light controlled “drug-free” macromolecules via upconversion-nanoparticle for precise tumor therapy. Nano Today 42:. https://doi.org/10.1016/J.NANTOD.2021.101360

  66. Aghajanzadeh M, Zamani M, Kouchi FR, Eixenberger J, Shirini D, Estrada D, Shirini F (2022) Synergic antitumor effect of photodynamic therapy and chemotherapy mediated by nano drug delivery systems. Pharmaceutics 14:322. https://doi.org/10.3390/PHARMACEUTICS14020322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61. https://doi.org/10.1126/SCIENCE.AAA8172

    Article  CAS  PubMed  Google Scholar 

  68. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287. https://doi.org/10.1038/NRC.2016.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, Tian T, Wei Z, Madan S, Sullivan RJ, Boland G, Flaherty K, Herlyn M, Ruppin E (2018) Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med 24:1545–1549. https://doi.org/10.1038/S41591-018-0157-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morrison AH, Diamond MS, Hay CA, Byrne KT, Vonderheide RH (2020) Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity. Proc Natl Acad Sci U S A 117:8022–8031. https://doi.org/10.1073/PNAS.1918971117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, Kurien A, Priceman SJ, Wang X, Harshbarger TL, D’Apuzzo M, Ressler JA, Jensen MC, Barish ME, Chen M, Portnow J, Forman SJ, Badie B (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375:2561–2569. https://doi.org/10.1056/NEJMOA1610497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, Komanduri KV, Lin Y, Jain N, Daver N, Westin J, Gulbis AM, Loghin ME, De Groot JF, Adkins S, Davis SE, Rezvani K, Hwu P, Shpall EJ (2018) Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat Rev Clin Oncol 15:47–62. https://doi.org/10.1038/NRCLINONC.2017.148

    Article  CAS  PubMed  Google Scholar 

  73. Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y, O’connor RS, Hwang WT, Pequignot E, Ambrose DE, Zhang C, Wilcox N, Bedoya F, Dorfmeier C, Chen F, Tian L, Parakandi H, Gupta M, Young RM, Johnson FB, Kulikovskaya I, Liu L, Xu J, Kassim SH, Davis MM, Levine BL, Frey NV, Siegel DL, Huang AC, Wherry EJ, Bitter H, Brogdon JL, Porter DL, June CH, Melenhorst JJ (2018) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24:563–571. https://doi.org/10.1038/S41591-018-0010-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4:11–22. https://doi.org/10.1038/NRC1252

    Article  CAS  PubMed  Google Scholar 

  75. Van Gorp H, Lamkanfi M (2019) The emerging roles of inflammasome-dependent cytokines in cancer development. EMBO Rep 20:e47575. https://doi.org/10.15252/EMBR.201847575

    Article  PubMed  PubMed Central  Google Scholar 

  76. Qiao J, Fu YX (2020) Cytokines that target immune killer cells against tumors. Cell Mol Immunol 17:722–727. https://doi.org/10.1038/S41423-020-0481-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Napolitano S, Brancaccio G, Argenziano G, Martinelli E, Morgillo F, Ciardiello F, Troiani T (2018) It is finally time for adjuvant therapy in melanoma. Cancer Treat Rev 69:101–111. https://doi.org/10.1016/J.CTRV.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  78. Tsujimura K, Ikehara Y, Nagata T, Koide Y, Kojima N (2009) Induction of anti-tumor immune responses with oligomannose-coated liposomes targeting to peritoneal macrophages. Procedia Vaccinol 1:127–134. https://doi.org/10.1016/J.PROVAC.2009.07.024

    Article  CAS  Google Scholar 

  79. Mettenbrink EM, Yang W, Wilhelm S (2022) Bioimaging with upconversion nanoparticles. Adv Photonics Res 3:2200098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco JA (2015) Upconverting nanoparticles: assessing the toxicity. Chem Soc Rev 44:1561–1584

    Article  CAS  PubMed  Google Scholar 

  81. Xiong L, Yang T, Yang Y, Xu C, Li F (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31:7078–7085

    Article  CAS  PubMed  Google Scholar 

  82. Xing H et al (2012) A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials 33:5384–5393

    Article  CAS  PubMed  Google Scholar 

  83. Cao T et al (2011) High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 32:2959–2968

    Article  CAS  PubMed  Google Scholar 

  84. Agraharam G, Saravanan N, Girigoswami A, Girigoswami K (2022) Future of Alzheimer’s disease: nanotechnology-based diagnostics and therapeutic approach. Bionanoscience 12:1002–1017. https://doi.org/10.1007/S12668-022-00998-8

    Article  Google Scholar 

  85. Celermajer DS, Chow CK, Marijon E, Anstey NM, Woo KS (2012) Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection. J Am Coll Cardiol 60:1207–1216. https://doi.org/10.1016/J.JACC.2012.03.074

    Article  PubMed  Google Scholar 

  86. Menezes G, Menez P, Meneze C (2011) Nanoscience in diagnostics: a short review. Internet J Med Updat - EJournal 6. https://doi.org/10.4314/IJMU.V6I1.63971

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.S. drafted the applications of UCNP; P.S. contributed in drafting the upconversion process; S.D. drafted the introduction and the surface modification of UCNP; S.S. conceived the idea and formatted and corrected the manuscript.

Corresponding author

Correspondence to Sujatha Sundaresan.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajee, R.S., Roy, P.S., Dey, S. et al. Upconversion nanoparticles and their potential in the realm of biomedical sciences and theranostics. J Nanopart Res 26, 50 (2024). https://doi.org/10.1007/s11051-024-05960-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05960-1

Keywords

Navigation