Skip to main content
Log in

The numerical simulation of CIS/CISSe graded band gap solar cell using SCAPS-1D software

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, two types of single absorber layer solar cells, Mo/p-CIS/n-CdS/Al-ZnO and Mo/p-CISSe/n-CdS/Al-ZnO, are simulated using the solar cell simulation software (SCAPS-1D), and the effect of the thickness of the absorber layer on the photovoltaic performance of the solar cells is investigated. In addition, the total thickness of the CIS/CISSe gradient bandgap absorber layer was specified to be 2.5 μm in the SCAPS-1D simulations, and the structure of the gradient bandgap solar cell was composed of Mo/p-CISSe/p-CIS/n-CdS/Al-ZnO. Using CdS and SnS2 buffer layers, respectively, the optimal photoelectric conversion efficiency (η) of the CIS/CISSe gradient bandgap solar cell is 23.23% and 23.52% at a CIS/CISSe layer thickness ratio of 1 μm/1.5 μm, which means that SnS2 can be used as a buffer layer for Cd-free solar cells. With the increase in carrier concentration in the buffer layer, the carrier transport mechanism changes from a leakage current mechanism to tunneling current mechanism. As a result, optimal open-circuit voltage (Voc), short circuit current (Jsc), filling factor (FF), and η of Mo/p-CISSe/ p-CIS /n-SnS2/Al-ZnO solar cell are 0.7809 V, 35.31 mA/cm2, 85.29%, and 23.52%, respectively, which uses the best impact parameters including CIS/CISSe absorption layer thickness ratio of 1 μm/1.5 μm, working temperature 300 K, and the carrier concentration of 1E + 18 cm−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the article.

References

  1. Diaz-Loera A, Ramos-Serrano JR, Calixto ME (2022) Semiconducting CuIn(SX, Se1−X)2 thin-film solar cell modeling using SCAPS-1D. MRS Advances 7:28–32. https://doi.org/10.1557/s43580-022-00231-4

    Article  CAS  Google Scholar 

  2. Ghebouli MA, Ghebouli B, Larbi R, Chihi T, Fatmi M (2021) Effect of buffer nature, absorber layer thickness and temperature on the performance of CISSe based solar cells, Using SCAPS-1D simulation program. Optik 241:166203. https://doi.org/10.1016/j.ijleo.2020.166203

    Article  CAS  Google Scholar 

  3. Elfarri H, Bouachri M, Frimane A, Fahoume M, Daoudi O, Battas M (2021) Optimization of vermin of thickness layers, temperature and defect density of CIS based solar cells with SCAPS-1D software, for photovoltaic application. Chalcogenide Lett 18(4):201–213. https://doi.org/10.15251/CL.2021.184.201

  4. Madan J, Shivani R, Pandey RS (2020) Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Solar Energy 197:212–221. https://doi.org/10.1016/j.solener.2020.01.006

    Article  CAS  Google Scholar 

  5. Kim K, Gwak J (2017) Seung Kyu Ahn, Young-Joo Eo, Joo Hyung Park, Jun-Sik Cho, Min Gu Kang, Hee-Eun Song, Jae Ho Yun, Simulations of chalcopyrite/c-Si tandem cells using SCAPS-1D. Sol Energy 145:52–58. https://doi.org/10.1016/j.solener.2017.01.031

    Article  CAS  Google Scholar 

  6. Abderrezek M, Djeghlal ME (2021) Numerical study of CZTS/CZTSSe tandem thin film solar cell using SCAPS-1D. Optik-Int J Light Electron Optics 242:167320. https://doi.org/10.1016/j.ijleo.2021.167320

    Article  CAS  Google Scholar 

  7. Amiri S, Dehghani S (2020) Design of highly efficient CZTS/CZTSe tandem solar cells. J Electron. J Electron Mater 49:2164–2172. https://doi.org/10.1007/s11664-019-07898-w

    Article  CAS  Google Scholar 

  8. Gupta GK, Dixit A (2018) Theoretical studies of single and tandem Cu2ZnSn(S/Se)4 junction solar cells for enhanced efficiency. Optic Mater 82:11–20. https://doi.org/10.1016/j.optmat.2018.05.030

    Article  CAS  Google Scholar 

  9. Adewoyin AD, Olopade MA, Oyebola OO, Chendo MA (2019) Development of CZTGS/CZTS tandem thin film solar cell using SCAPS-1D. Optik 176:132–142. https://doi.org/10.1016/j.ijleo.2018.09.033

    Article  CAS  Google Scholar 

  10. Muhunthan N, Singh OP, Thakur MK, Karthikeyan P, Singh D, Saravanan M, Singh VN (2014) Interfacial properties of CZTS thin film solar. Solar Energy 2014:476123. https://doi.org/10.1155/2014/476123

  11. Boulkaddat L, Soussi A, Najih H, Abouabassi K, Ait hssi A, Labchir N, Elfanaoui A, Markazi R, Bouabid K, Ihlal A (2023) Experimental and theoretical study of electrodeposited CuInS2 thin films for solar cell applications. Phys B: Condens Matter 671:0921–4526. https://doi.org/10.1016/j.physb.2023.415374

    Article  CAS  Google Scholar 

  12. Pervaiz H, Khan ZS, Shahzad N, Ahmed N, Jamil Q (2022) Synthesis and characterization of CuInS2 nanostructures and their role in solar cell applications. Mater Chem Phys 290:0254–0584. https://doi.org/10.1016/j.matchemphys.2022.126602

    Article  CAS  Google Scholar 

  13. Moujoud S, Hartiti B, Touhtouh S, Rachidy C, Belhora F, Thevenin P, Hajjaji A (2021) Numerical modeling of copper indium disulfide thin film based solar cells. Optic Mater 122:111749 https://doi.org/10.1016/j.optmat.2021.111749

  14. Siemer K, Klaer Jo, Luck I, Bruns J, Klenk R, Bräunig D (2001) Efficient CuInS2 solar cells from a rapid thermal process (RTP). Sol Energy Mater Sol Cells 67:159–166. https://doi.org/10.1016/S0927-0248(00)00276-2

    Article  CAS  Google Scholar 

  15. Oyola JS, Castro JM, Gordillo G (2012) ZnO films grown using a novel procedure based on the reactive evaporation method. Sol Energy Mater Sol Cells 102:0927–248. https://doi.org/10.1016/j.solmat.2012.03.011

    Article  CAS  Google Scholar 

  16. Ohashi T, Inakoshi K, Hashimoto Y, Ito K (1998) Preparation of Culn(SxSe1−x)2 thin films by sulfurization and selenization. Sol Energy Mater Sol Cells 50:0927–248. https://doi.org/10.1016/S0927-0248(97)00111-6

    Article  Google Scholar 

  17. Ren G, Zhuang D, Zhao M, Wei Y, Wu Y, Li X, Lyu X, Wang C, Li Y (2020) CZTSSe solar cell with an efficiency of 10.19% based on absorbers with homogeneous composition and structure using a novel two-step annealing process. Solar Energy 207:651–658. https://doi.org/10.1016/j.solener.2020.07.016

    Article  CAS  Google Scholar 

  18. Chen Z, Liu X, Zhao Y, Liang X, Chen Y, Wang L, Shen Y (2018) The study of the CdS film and the carrier transport characteristics of CdS/CuInS2 pn junction. J Sol-Gel Sci Technol 85:12–22. https://doi.org/10.1007/s10971-017-4525-6

    Article  CAS  Google Scholar 

  19. Saraswathi Chirakkara SB (2012) Krupanidhi, Study of n-ZnO/p-Si (100) thin film heterojunctions by pulsed laser deposition without buffer layer. Thin Solid Films 520:5894–5899. https://doi.org/10.1016/j.tsf.2012.05.003

    Article  CAS  Google Scholar 

  20. Pietruszka R, Luka G, Kopalko K, Zielony E, Bieganski P, Placzek-Popko E, Godlewski M (2014) Photovoltaic and photoelectrical response of n-ZnO/p-Si heterostructures with ZnO films grown by an Atomic Layer Deposition method. Mater Sci Semicond Process 25:190–196. https://doi.org/10.1016/j.mssp.2013.11.026

    Article  CAS  Google Scholar 

  21. Nguyen M, Ernits K, Tai KF, Ng CF, Pramana SS, Sasangka WA, Batabyal SK, Holopainen T, Meissner D, Neisser A, Woong LH (2015) ZnS Buffer Layer for Cu2ZnSn(SSe)4 Monograin Layer Solar Cell. Sol Energy 111:344–349. https://doi.org/10.1016/j.solener.2014.11.006

    Article  CAS  Google Scholar 

  22. Ullah S, Bouich A, Ullah H, Mari B, Mollar M (2020) Comparative study of binary cadmium sulfide (CdS) and tin disulfide (SnS2) thin buffer layers. Solar Energy 208:637–642. https://doi.org/10.1016/j.solener.2020.08.036

    Article  CAS  Google Scholar 

  23. Tripathi S, Kumar B, Dwivedi DK (2021) Numerical simulation of non-toxic In2S3/SnS2 buffer layer to enhance CZTS solar cells efficiency by optimizing device parameters. Optik-Int J Light Electron Optic 227:166087. https://doi.org/10.1016/j.ijleo.2020.166087

    Article  CAS  Google Scholar 

  24. Haghighi M, Minbashi M, Taghavinia N, Kim DH, Mahdavi SM, Kordbacheh AA (2018) A modelling study on utilizing SnS2 as the buffer layer of CZT(SSe) solar cells. Sol Energy 167:165–171. https://doi.org/10.1016/j.solener.2018.04.010

    Article  CAS  Google Scholar 

  25. Kumagai Y, Burton LA, Walsh A, Oba F (2016) Electronic structure and defect physics of tin sulfides: SnS, Sn2S3, and SnS2. Phys Rev Appl 6:014009. https://doi.org/10.1103/PhysRevApplied.6.014009

    Article  CAS  Google Scholar 

  26. Ghamsari-Yazdel F, Fattah A (2022) Performance enhancement of CIGS solar cells using ITO as buffer layer. Micro and Nanostructures 168:207289. https://doi.org/10.1016/j.micrna.2022.207289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Jianguo Fan from II–VI Inc. 141 Mt. Bethel Rd, Warren NJ 07059, for the help on correction of grammatical errors.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Yu, Q., Zhao, Hw. et al. The numerical simulation of CIS/CISSe graded band gap solar cell using SCAPS-1D software. J Nanopart Res 25, 256 (2023). https://doi.org/10.1007/s11051-023-05906-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05906-z

Keywords

Navigation