Skip to main content
Log in

Engineering micro/nano-fibrous scaffolds with silver coating for tailored wound repair applications

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Electrospun scaffolds originating from polymeric amalgams, specifically poly(glycerol sebacate/poly(ε-caprolactone) (PGS/PCL) and poly(methyl methacrylate)–poly(ε-caprolactone) (PMMA/PCL), have emerged as a versatile substrate within the realm of biomedical tissue engineering. Their salience is underscored by their remarkable thermal, optical, and mechanical attributes. In this investigation, we harnessed conventional electro-spinning methodologies to fabricate nano/micro-fibrous scaffolds from a hybrid composite, amalgamating PMMA/PCL and PGS/PCL fibers. A pivotal innovation lay in the precise deposition of silver nanoparticles (AgNPs) on one facet of these scaffolds, endowing them with anti-bacterial functionality. This AgNP coating not only forestalled melting proclivities but also meticulously tuned structural facets, engendering a diminution in pore diameter and augmentation in fiber diameter, thereby engendering an elevation in thermo-mechanical performance. Comparative scrutiny delineated that the PMMA/PCL composite fibrous scaffolds manifested superior mechanical attributes, including augmented modulus (E) and ultimate tensile strength (UTS), accompanied by attenuated tensile strain, obviating the requisite for supplementary post-processing steps. These AgNP-endowed composite fibrous scaffolds engender sanguine prospects for biomedical applications, encompassing surgical meshes, bandages, and band-aids, underpinned by their amplified anti-bacterial characteristics, which are instrumental in the context of wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data is provided with the request.

References

  1. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Longaker MT (2009) Wound Repair Regen 17(6):763–771

    Article  Google Scholar 

  2. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Burns 33(2):139–148

    Article  Google Scholar 

  3. Driver VR, Fabbi M, Lavery LA, Gibbons G (2010) J Vasc Surg 52(5):17S-22S

    Article  Google Scholar 

  4. Branski LK, Gauglitz GG, Herndon DN, Jeschke MG (2009) Burns 35(2):171–180

    Article  Google Scholar 

  5. Epstein FH, Singer AJ, Clark RA (1999) N Engl J Med 341(10):738–746

    Article  Google Scholar 

  6. Bayram Y, Parlak M, Aypak C, Bayram I (2013) Int J Med Sci 10(1):19

    Article  Google Scholar 

  7. Kanmani P, Rhim JW (2014) Food Chem 148:162–169

    Article  CAS  Google Scholar 

  8. Zhang LL, Jiang YH, Ding YL, Daskalakis N, Jeuken L, Povey M, York DW (2010) J Nanoparticle Res 12:1625–1636

    Article  CAS  Google Scholar 

  9. Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P (2014) Food Hydrocoll 41:265–273

    Article  CAS  Google Scholar 

  10. Kalakonda P, Banne S (2018) Plasmonics 13:1265–1269

    Article  CAS  Google Scholar 

  11. Kalakonda P, Banne S (2017) Plasmonics 12(4):1221–1225

    Article  CAS  Google Scholar 

  12. Kalakonda P (2016) Nanomater Nanotechnol 6

  13. Hemar Y, Liu LH, Meunier N, Woonton BW (2010) Innov Food Sci Emerg Technol 11:432–440

    Article  CAS  Google Scholar 

  14. Sheu MT, Huang JC, Yeh GC, Ho HO (2001) Biomaterials 22(15):1713–1719

    Article  CAS  Google Scholar 

  15. Kong HJ, Wong E, Mooney DJ (2003) Macromolecules 36(12):4582–4588

    Article  CAS  Google Scholar 

  16. Khademhosseini A, Vacanti JP, Langer R (2009) Sci Am 300:64–71

    Article  CAS  Google Scholar 

  17. Radisic M, Park H, Martens TP, Salazar-Lazaro JE, Geng W, Wang Y, Vunjak-Novakovic G (2008) J Biomed Mater Res 86(3):713–724

    Article  Google Scholar 

  18. Redenti S, Neeley WL, Rompani S, Saigal S, Yang J, Klassen H, Young MJ (2009) Biomaterials 30(21):3405–3414

    Article  CAS  Google Scholar 

  19. Kalakonda P, Aldhahri MA, Abdelwahab MS, Tamayol A, Moghaddam KM, Ben Rached F, Chaieb S (2017) RSC Adv 7(55):34331–34338

    Article  CAS  Google Scholar 

  20. Kalakonda P, Banne S (2017) Nanotechnol Sci Appl 10:45–53

    Article  CAS  Google Scholar 

  21. Kalakonda P, Banne S, Kalakonda PB (2022) J Polym Res 29:442

    Article  CAS  Google Scholar 

  22. Masoumi N, Larson BL, Annabi N, Kharaziha M, Zamanian B, Shapero KS, Khademhosseini A (2014) Adv Healthc Mater 3(6):929–939

    Article  CAS  Google Scholar 

  23. Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) Nat Biotechnol 20(6):602–606

    Article  CAS  Google Scholar 

  24. Wang YD, Kim YM, Langer R (2003) J Biomed Mater Res A 66(1):192–197

    Article  Google Scholar 

  25. Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang Y (2005) Tissue Eng 11(2–3):302–309

    Article  CAS  Google Scholar 

  26. Sundback CA, Shyu JY, Wang YD, Faquin WC, Langer RS, Vacanti JP, Hadlock TA (2005) Biomaterials 26(23):5454–5464

    Article  CAS  Google Scholar 

  27. Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Proc Natl Acad Sci USA 103(7):2480–2487

    Article  CAS  Google Scholar 

  28. Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA (2006) Biomaterials 27(17):4315–4324

    Article  CAS  Google Scholar 

  29. Catledge SA, Clem WC, Shrikishen N, Chowdhury S, Stanishevsky AV, Koopman M, Vohra YK (2007) Biomed Mater 2(3):142–150

    Article  CAS  Google Scholar 

  30. Engelmayr GC, Cheng MY, Bettinger CJ, Borenstein JT, Langer R, Freed LE (2008) Nat Mater 7(11):1003–1010

    Article  CAS  Google Scholar 

  31. Gao J, Crapo P, Nerem R, Wang YD (2008) J Biomed Mater Res A 85(4):1120–1128

    Article  Google Scholar 

  32. Boland ED, Pawlowski KJ, Barnes CP, Simpson DG, Wnek GE, Bowlin GL (2006) ACS Symp Ser 918:188–204

    Article  CAS  Google Scholar 

  33. Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL (2008) Biomaterials 29(9):2348–2358

    Article  CAS  Google Scholar 

  34. Balguid A, Rubbens MP, Mol A, Bank RA, Bogers AJ, van Kats JP, Bouten CV (2007) Tissue Eng 13(7):1501–1511

    Article  CAS  Google Scholar 

  35. Kim GH (2008) Biomed Mater 3(2):025010

    Article  Google Scholar 

  36. Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL (2006) Biomaterials 27(16):3115–3124

    Article  CAS  Google Scholar 

  37. Balguid A, Mol A, van Marion MH, Bank RA, Bouten CV, Baaijens FP (2009) Tissue Eng Part A 15(2):437–444

    Article  CAS  Google Scholar 

  38. Almajhdi FN, Fouad H, Khalil KA, Awad HM, Mohamed SH, Elsarnagawy T, Abdo HS (2014) J Mater Sci: Mater Med 25(4):1045–1053

    CAS  Google Scholar 

  39. Chaubey N, Sahoo AK, Chattopadhyay A, Ghosh SS (2014) Biomater Sci 2(8):1080–1089

    Article  CAS  Google Scholar 

  40. Gungor-Ozkerim PS, Balkan T, Kose GT, Sarac AS, Kok FN (2014) J Biomed Mater Res A 102(5):1897–1908

    Article  Google Scholar 

  41. Jiang J, Xie J, Ma B, Bartlett DE, Xu A, Wang CH (2014) Acta Biomater 10(3):1324–1332

    Article  CAS  Google Scholar 

  42. Wang H, Li Y, Jiang S, Zhang P, Min S, Jiang S (2014) J Appl Polym Sci 131(1):40903

    Article  Google Scholar 

  43. Tseng YY, Liu SJ (2015) Nanomedicine 10:1785–1800

    Article  CAS  Google Scholar 

  44. Kalakonda P, Kalakonda PB, Banne S (2021) Nanomater Nanotechnol 11

  45. Kalakonda P, Cabrera Y, Judith R, Georgiev GY, Cebe P, Iannacchione GS (2014) MRS Online Proc Libr 1660:25–30

    Article  Google Scholar 

  46. Kalakonda P, Daly J, Xu K, Georgiev GY, Cebe P, Iannacchione GS (2012) MRS Online Proc Libr 1499:583

    Google Scholar 

  47. Sant S, Iyer D, Gaharwar AK, Patel A, Khademhosseini A (2013) Acta Biomater 9(3):5963–5973

    Article  CAS  Google Scholar 

  48. Iovits JL, Devlin JJ, Eng G, Martens TP, Vunjak-Novakovic G, Burdick JA (2009) ACS Appl Mater Interfaces 1(8):1878–1886

    Article  Google Scholar 

  49. Iovits JL, Padera RF, Burdick JA (2008) Biomed Mater 3(3):034104

    Article  Google Scholar 

  50. Sant S, Hwang CM, Lee SH, Khademhosseini A (2011) J Tissue Eng Regen Med 5(4):283–291

    Article  CAS  Google Scholar 

  51. Qian G, Zhang L, Liu X, Shengda Wu, Peng S, Shuai C (2021) Mater Sci Eng, C 129:112425

    Article  CAS  Google Scholar 

  52. Ferry JD (1980) Viscoelastic properties of polymers

  53. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks. J Chem Phys 11:512–520

    Article  CAS  Google Scholar 

  54. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites

  55. Kalakonda P et al (2023) Facile Synthesis of Silver Nanoparticles Using Green Tea Leaf Extract and Evolution of Antibacterial Activity. Plasmonics 18:1837–1845

    Article  Google Scholar 

  56. Kalakonda P et al (2023) Green synthesis and characteristics of silver nanoparticles using argyreia nervosa leaf extracts, and their antimicrobial activity. Plasmonic 18(3):1075–1081

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Government City College (A), Osmania University, Hyderabad for utilizing facilities.

Author information

Authors and Affiliations

Authors

Contributions

Parvathalu Kalakonda: supervision and execution, writing—original draft and editing, and visualization. Shalini Thudumu and Sowjanya Laxmi: designing experiment and data collection. All the other authors were involved in various parts of discussion of the project.

Corresponding author

Correspondence to Parvathalu Kalakonda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalakonda, P., Thudumu, S., Mynepally, S. . et al. Engineering micro/nano-fibrous scaffolds with silver coating for tailored wound repair applications. J Nanopart Res 25, 254 (2023). https://doi.org/10.1007/s11051-023-05903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05903-2

Keywords

Navigation