Skip to main content
Log in

Electrospun Silk Fibroin and Collagen Composite Nanofiber Incorporated with Palladium and Platinum Nanoparticles for Wound Dressing Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the field of biomedical engineering, nanofiber scaffolds have excellent biomaterial properties, making them highly suitable for superior wound dressing applications. This work presents the fabrication of a novel bimetal blend comprising palladium and platinum nanoparticles integrated with silk fibroin and collagen composite nanofibers through the electrospinning method. The fabricated composite nanofibrous scaffolds were investigated to analyze their chemical composition, surface morphology, thermal stability, porosity, hemocompatibility, mechanical strength, swelling, and degradation properties. The average diameter length of the SF/CL/Pd–Pt composite nanofiber scaffolds is 141.62 ± 33.03 nm, with Pd and Pt nanoparticle diameters measured at 8.64 and 7.36 nm, respectively. In vitro assessments of SF/CL and SF/CL/Pd–Pt composite nanofiber scaffolds demonstrated outstanding antibacterial efficacy against both gram-positive (S. aureus) and gram-negative (E. coli) bacteria. The antioxidant activity of SF/CL/Pd–Pt composite nanofibers exhibited a free radical scavenging percentage of 94.34%. Additionally, cell proliferation studies conducted on the fibroblast (NIH3T3) cell line, along with in vivo investigations on male Sprague–Dawley rats, underscored the remarkable wound-healing ability of the SF/CL/Pd–Pt composite nanofiber scaffolds. Furthermore, histopathological examination of wounded tissue samples using H&E and Masson trichrome staining revealed faster reepithelialization, granulation, angiogenesis, and reduced inflammatory response. These findings demonstrate that SF/CL/Pd–Pt composite nanofibrous scaffolds are excellent wound dressing materials for all biomedical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Zhang Z, Wang J, Luo Y, Li C, Sun Y, Wang K, Deng G, Zhao L, Yuan C, Lu J, Chen Y (2023) A pH-responsive ZC-QPP hydrogel for synergistic antibacterial and antioxidant treatment to enhance wound healing. J Mater Chem B 11(38):9300–9310. https://doi.org/10.1039/D3TB01567J

    Article  PubMed  Google Scholar 

  2. Zahra D, Shokat Z, Ahmad A, Javaid A, Khurshid M, Ashfaq UA, Nashwan AJ (2023) Exploring the recent developments of alginate silk fibroin material for hydrogel wound dressing: a review. Int J Biol Macromol 25:125989. https://doi.org/10.1016/j.ijbiomac.2023.125989

    Article  CAS  Google Scholar 

  3. Abd Elkodous M, Samuel Oluwaseun O, Sumanta S, Rajesh K (2023) Recent advances in modification of novel carbon-based composites: synthesis, properties, and biotechnological/ biomedical applications. Chem Biol Interact 379:110517. https://doi.org/10.1016/j.cbi.2023.110517

    Article  CAS  PubMed  Google Scholar 

  4. Patil PP, Reagan MR, Bohara RA (2020) Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. Int J Biol Macromol 164:4613–4627. https://doi.org/10.1016/j.ijbiomac.2020.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ghaeli I, De Moraes MA, Beppu MM, Lewandowska K, Sionkowska A, Ferreira-Da-Silva F, Ferraz MP, Monteiro FJ (2017) Phase behaviour and miscibility studies of collagen/silk fibroin macromolecular system in dilute solutions and solid state. Molecules. https://doi.org/10.3390/molecules22081368

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhao G, Zhang Y, Zhang L, Ye ZG, Ren W, Xu F, Wang S, Liu M, Zhang X (2017) 3D conformal modification of electrospun silk nanofibers with nanoscaled ZnO deposition for enhanced photocatalytic activity. ACS Biomater Sci Eng 3:2900–2906. https://doi.org/10.1021/acsbiomaterials.6b00548

    Article  CAS  PubMed  Google Scholar 

  7. Martin P, Nunan R (2015) Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 173:370–378. https://doi.org/10.1111/bjd.13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heydari P, Zargar Kharazi A, Asgary S, Parham S (2022) Comparing the wound healing effect of a controlled release wound dressing containing curcumin/ciprofloxacin and simvastatin/ciprofloxacin in a rat model: a preclinical study. J Biomed Mater Res A 110:341–352. https://doi.org/10.1002/jbm.a.37292

    Article  CAS  PubMed  Google Scholar 

  9. Murugesan B, Arumugam M, Pandiyan N, Veerasingam M, Sonamuthu J, Samayanan S, Mahalingam S (2019) Ornamental morphology of ionic liquid functionalized ternary doped N, P, F and N, B, F-reduced graphene oxide and their prevention activities of bacterial biofilm-associated with orthopedic implantation. Mater Sci Eng C 98:1122–1132. https://doi.org/10.1016/j.msec.2019.01.052

    Article  CAS  Google Scholar 

  10. Amgarten B, Rajan R, Martínez-Sáez N, Oliveira BL, Albuquerque IS, Brooks RA, Reid DG, Duer MJ, Bernardes GJL (2015) Collagen labelling with an azide-proline chemical reporter in live cells. Chem Commun 51:5250–5252. https://doi.org/10.1039/c4cc07974d

    Article  CAS  Google Scholar 

  11. Kandhasamy S, Perumal S, Madhan B, Umamaheswari N, Banday JA, Perumal PT, Santhanakrishnan VP (2017) Synthesis and fabrication of collagen-coated ostholamide electrospun nanofiber scaffold for wound healing. ACS Appl Mater Interfaces 9:8556–8568. https://doi.org/10.1021/acsami.6b16488

    Article  CAS  PubMed  Google Scholar 

  12. Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M (2020) Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Front Chem 8:1–15. https://doi.org/10.3389/fchem.2020.00376

    Article  CAS  Google Scholar 

  13. Reizabal A, Brito-Pereira R, Fernandes MM, Castro N, Correia V, Ribeiro C, Costa CM, Perez L, Vilas JL, Lanceros-Méndez S (2020) Silk fibroin magnetoactive nanocomposite films and membranes for dynamic bone tissue engineering strategies. Materialia. https://doi.org/10.1016/j.mtla.2020.100709

    Article  Google Scholar 

  14. Siddiqi KS, Husen A (2016) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett. https://doi.org/10.1186/s11671-016-1695-z

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dadras Chomachayi M, Solouk A, Akbari S, Sadeghi D, Mirahmadi F, Mirzadeh H (2018) Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study. J Biomed Mater Res A 106:1092–1103. https://doi.org/10.1002/jbm.a.36303

    Article  CAS  PubMed  Google Scholar 

  16. Ghalei S, Nourmohammadi J, Solouk A, Mirzadeh H (2018) Enhanced cellular response elicited by addition of amniotic fluid to alginate hydrogel-electrospun silk fibroin fibers for potential wound dressing application. Colloids Surf B Biointerfaces 172:82–89. https://doi.org/10.1016/j.colsurfb.2018.08.028

    Article  CAS  PubMed  Google Scholar 

  17. Ramadass SK, Nazir LS, Thangam R, Perumal RK, Manjubala I, Madhan B, Seetharaman S (2019) Type i collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: a multifunctional approach for the treatment of ischemic chronic wounds. Colloids Surf B Biointerfaces 175:636–643. https://doi.org/10.1016/j.colsurfb.2018.12.025

    Article  CAS  PubMed  Google Scholar 

  18. Ribeiro N, Sousa A, Cunha-Reis C, Oliveira AL, Granja PL, Monteiro FJ, Sousa SR (2021) New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofibers, nanomedicine nanotechnology. Biol Med 33:102353. https://doi.org/10.1016/j.nano.2020.102353

    Article  CAS  Google Scholar 

  19. Sun W, Gregory DA, Tomeh MA, Zhao X (2021) Silk fibroin as a functional biomaterial for tissue engineering. Int J Mol Sci 22:1–28. https://doi.org/10.3390/ijms22031499

    Article  CAS  Google Scholar 

  20. Du C, Li Y, Xia X, Du E, Lin Y, Lian J, Ren C, Li S, Wei W, Qin Y (2021) Identification of a novel collagen-like peptide by high-throughput screening for effective wound-healing therapy. Int J Biol Macromol 173:541–553. https://doi.org/10.1016/j.ijbiomac.2021.01.104

    Article  CAS  PubMed  Google Scholar 

  21. Aioub M, Panikkanvalappil SR, El-Sayed MA (2017) Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy. ACS Nano 11:579–586. https://doi.org/10.1021/acsnano.6b06651

    Article  CAS  PubMed  Google Scholar 

  22. Shibuya S, Ozawa Y, Watanabe K, Izuo N, Toda T, Yokote K, Shimizu T (2014) Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0109288

    Article  PubMed  PubMed Central  Google Scholar 

  23. Czarnomysy R, Radomska D, Szewczyk OK, Roszczenko P, Bielawski K (2021) Platinum and palladium complexes as promising sources for antitumor treatments. Int J Mol Sci. https://doi.org/10.3390/ijms22158271

    Article  PubMed  PubMed Central  Google Scholar 

  24. He SB, Yang L, Lin MT (2021) Platinum group element-based nanozymes for biomedical applications: an overview. Biomed Mater. https://doi.org/10.1088/1748-605X/abc90416:32001

    Article  PubMed  Google Scholar 

  25. Yang S, Li X, Liu P, Zhang M, Wang C, Zhang B (2020) Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dual-drug release for wound-healing applications. ACS Biomater Sci Eng 6:4666–4676. https://doi.org/10.1021/acsbiomaterials.0c00674

    Article  CAS  PubMed  Google Scholar 

  26. Arumugam M, Murugesan B, Malliappan P (2023) Electrospun silk fibroin and gelatin blended nanofibers functionalized with noble metal nanoparticles for enhanced biomedical applications. Process Biochem 124:221–234. https://doi.org/10.1016/j.procbio.2022.11.019

    Article  CAS  Google Scholar 

  27. Polini A, Pagliara S, Stabile R, Netti GS, Roca L, Prattichizzo C, Gesualdo L, Cingolani R, Pisignano D (2010) Collagen-functionalised electrospun polymer fibers for bioengineering applications. Soft Matter 6:1668–1674. https://doi.org/10.1039/b921932c

    Article  CAS  Google Scholar 

  28. Wang J, Yang Q, Cheng N, Tao X, Zhang Z, Sun X, Zhang Q (2016) Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Mater Sci Eng C 61:705–711. https://doi.org/10.1016/j.msec.2015.12.097

    Article  CAS  Google Scholar 

  29. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Roh S, Cho JJ, Park WH, Min BM (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461. https://doi.org/10.1016/j.biomaterials.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  30. Felicitas P, Sascha B, Nadja S, Goran M, Sabine D, Daniel Dietrich R (2022) Physiological oxygen and co-culture with human fibroblasts facilitate in vivo-like properties in human renal proximal tubular epithelial cells. Chem Biol Interact. https://doi.org/10.1016/j.cbi.2022.109959

    Article  Google Scholar 

  31. Balakrishnan SB, Kuppu S, Thambusamy S (2021) Biologically important alumina nanoparticles modified polyvinylpyrrolidone scaffolds in vitro characterizations and it is in vivo wound healing efficacy. J Mol Struct 1246:131195. https://doi.org/10.1016/j.molstruc.2021.131195

    Article  CAS  Google Scholar 

  32. Balakrishnan SB, Alam M, Ahmad N, Govindasamy M, Kuppu S, Thambusamy S (2021) Electrospinning nanofibrous graft preparation and wound healing studies using ZnO nanoparticles and glucosamine loaded with poly(methyl methacrylate)/polyethylene glycol. New J Chem 45:7987–7998. https://doi.org/10.1039/d0nj05409g

    Article  CAS  Google Scholar 

  33. Qi P, Zeng J, Tong X, Shi J, Wang Y, Sui K (2021) Bioinspired synthesis of fiber-shaped silk fibroin-ferric oxide nanohybrid for superior elimination of antimonite. J Hazard Mater 403:123909. https://doi.org/10.1016/j.jhazmat.2020.123909

    Article  CAS  PubMed  Google Scholar 

  34. Arumugam M, Murugesan B, Pandiyan N, Chinnalagu DK, Rangasamy G, Mahalingam S (2021) Electrospinning cellulose acetate/silk fibroin/Au-Ag hybrid composite nanofiber for enhanced biocidal activity against MCF-7 breast cancer cell. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2021.112019

    Article  Google Scholar 

  35. Murugesan B, Pandiyan N, Arumugam M, Sonamuthu J, Samayanan S, Yurong C, JumingS. Y (2020) Mahalingam, fabrication of palladium nanoparticles anchored polypyrrole functionalized reduced graphene oxide nanocomposite for antibiofilm associated orthopedic tissue engineering. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.145403

    Article  Google Scholar 

  36. Kasinathan K, Marimuthu K, Murugesan B, Samayanan S, Panchu SJ, Swart HC, Savariroyan SRI (2021) Synthesis of biocompatible chitosan functionalized Ag decorated biocomposite for effective antibacterial and anticancer activity. Int J Biol Macromol 178:270–282. https://doi.org/10.1016/j.ijbiomac.2021.02.127

    Article  CAS  PubMed  Google Scholar 

  37. Wang LJ, Zhang J, Zhao X, Xu LL, Lyu ZY, Lai M (2015) Palladium nanoparticles functionalized graphene nanosheets for Li-O 2 batteries : enhanced performance by tailoring the morphology of the discharge product. RCS Adv 5:73451–73456. https://doi.org/10.1021/acs.jpcc.6b10882

    Article  CAS  Google Scholar 

  38. Chen J, Niu Q, Chen G, Nie J, Ma G (2017) Electrooxidation of methanol on Pt @Ni bimetallic catalyst supported on porous carbon nanofibers. J Phys Chem C 121:1463–1471. https://doi.org/10.1021/acs.jpcc.6b10882

    Article  CAS  Google Scholar 

  39. Zhang Y, Liu Y, Jiang Z, Wang J, Xu Z, Meng K, Zhao H (2021) Poly(glyceryl sebacate)/silk fibroin small-diameter artificial blood vessels with good elasticity and compliance. Smart Mater Med 2:74–86. https://doi.org/10.1016/j.smaim.2021.01.001

    Article  CAS  Google Scholar 

  40. Chen ZJ, Shi HH, Zheng L, Zhang H, Cha YY, Ruan HX, Zhang Y, Zhang XC (2021) A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler. Int J Biol Macromol 182:286–297. https://doi.org/10.1016/j.ijbiomac.2021.03.204

    Article  CAS  PubMed  Google Scholar 

  41. Zhang D, Li L, Shan Y, Xiong J, Hu Z, Zhang Y, Gao J (2019) In vivo study of silk fibroin/gelatin electrospun nanofiber dressing loaded with astragaloside IV on the effect of promoting wound healing and relieving scar. J Drug Deliv Sci Technol 52:272–281. https://doi.org/10.1016/j.jddst.2019.04.021

    Article  CAS  Google Scholar 

  42. Wu J, Wang S, Zheng Z, Li J (2022) Fabrication of biologically inspired electrospun collagen/silk fibroin/bioactive glass composited nanofibrous scaffold to accelerate the treatment efficiency of bone repair. Regen Ther 21:122–138. https://doi.org/10.1016/j.reth.2022.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Q, Zhou S, Wang L, You R, Yan S, Zhang Q, Li M (2021) Bioactive silk fibroin scaffold with nanoarchitecture for wound healing. Compos Part B Eng 224:109165. https://doi.org/10.1016/j.compositesb.2021.109165

    Article  CAS  Google Scholar 

  44. Xiao L, Wu M, Yan F, Xie Y, Liu Z, Huang H, Yang Z, Yao S, Cai L (2021) A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin coating promote bone regeneration in vivo. Int J Biol Macromol 172:19–29. https://doi.org/10.1016/j.ijbiomac.2021.01.036

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Zhang M, Yan Z et al (2024) Metal nanoparticle hybrid hydrogels: the state-of-the-art of combining hard and soft materials to promote wound healing. Theranostics 14:1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Desai MP, Patil RV, Pawar KD (2020) Green biogenic approach to optimized biosynthesis of noble metal nanoparticles with potential catalytic, antioxidant and antihaemolytic activities. Process Biochem 98:172–182. https://doi.org/10.1016/j.procbio.2020.08.005

    Article  CAS  Google Scholar 

  47. Anila PA, Keerthiga B, Ramesh M, Muralisankar T (2021) Synthesis and characterization of palladium nanoparticles by chemical and green methods: a comparative study on hepatic toxicity using zebrafish as an animal model. Comp Biochem Physiol C Toxicol Pharmacol 244:108979. https://doi.org/10.1016/j.cbpc.2021.108979

    Article  CAS  PubMed  Google Scholar 

  48. Huang K, Jinzhong Z, Zhu T, Morsi Y, Aldalbahi A, El-Newehy M, Yan X, Mo X (2020) PLCL/Silk fibroin based antibacterial nano wound dressing encapsulating oregano essential oil: fabrication, characterization and biological evaluation. Colloids Surf B Biointerfaces 196:111352. https://doi.org/10.1016/j.colsurfb.2020.111352

    Article  CAS  PubMed  Google Scholar 

  49. You C, Li Q, Wang X, Wu P, Ho JK, Jin R, Zhang L, Shao H, Han C (2017) Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-10481-0

    Article  CAS  Google Scholar 

  50. Murugesan B, Pandiyan N, Kasinathan K, Rajaiah A, Arumuga M, Subramanian P, Sonamuthu J, Samayanan S, Arumugam VR, Marimuthu K, Yurong C, Mahalingam S (2020) Fabrication of heteroatom doped NFP-MWCNT and NFB-MWCNT nanocomposite from imidazolium ionic liquid functionalized MWCNT for antibiofilm and wound healing in Wistar rats: synthesis, characterization, in-vitro and in-vivo studies. Mater Sci Eng C 111:110791. https://doi.org/10.1016/j.msec.2020.110791

    Article  CAS  Google Scholar 

  51. Peng Y, Ma Y, Bao Y, Liu Z, Chen L, Dai F, Li Z (2021) Electrospun PLGA/SF/artemisinin composite nanofibrous membranes for wound dressing. Int J Biol Macromol 183:68–78. https://doi.org/10.1016/j.ijbiomac.2021.04.021

    Article  CAS  PubMed  Google Scholar 

  52. Chouhan D, Chakraborty B, Nandi SK, Mandal BB (2017) Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater 48:157–174. https://doi.org/10.1016/j.actbio.2016.10.019

    Article  CAS  PubMed  Google Scholar 

  53. Sylvester MA, Amini F, Keat TC (2019) Electrospun nanofibers in wound healing. Mater Today Proc 29:1–6. https://doi.org/10.1016/j.matpr.2020.05.686

    Article  CAS  Google Scholar 

  54. White ES, Mantovani AR (2013) Inflammation, wound repair, and fibrosis: reassessing the spectrum of tissue injury and resolution. J Pathol 229:141–144. https://doi.org/10.1002/path.4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bloch K, Pardesi K, Satriano C, Ghosh S (2021) Bacteriogenic platinum nanoparticles for application in nanomedicine. Front Chem 9:1–11. https://doi.org/10.3389/fchem.2021.624344

    Article  CAS  Google Scholar 

  56. Xu X, Zhang J, Wang X (2024) Multifunctional Pd single-atom nanozyme for enhanced cascade chemodynamic therapy of chronic wounds. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.3c06198

    Article  Google Scholar 

  57. Chlumsky O, Purkrtova S, Michova H, Sykorova H, Slepicka P, Fajstavr D, Ulbrich P, Viktorova J, Demnerova K (2021) Antimicrobial properties of palladium and platinum nanoparticles: a new tool for combating food-borne pathogens. Int J Mol Sci. https://doi.org/10.3390/ijms22157892

    Article  PubMed  PubMed Central  Google Scholar 

  58. Agarwal Y, Rajinikanth PS, Ranjan S, Tiwari U, Balasubramnaiam J, Pandey P, Arya DK, Anand S, Deepak P (2021) Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: an in-vitro and in-vivo studies. Int J Biol Macromol 176:376–386. https://doi.org/10.1016/j.ijbiomac.2021.02.025

    Article  CAS  PubMed  Google Scholar 

  59. Dhanavel S, Manivannan N, Mathivanan N, Gupta VK, Narayanan V, Stephen A (2018) Preparation and characterization of cross-linked chitosan/palladium nanocomposites for catalytic and antibacterial activity. J Mol Liq 257:32–41. https://doi.org/10.1016/j.molliq.2018.02.076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support provided to the Rashtriya Uchchatar Shiksha Abhiyan (RUSA-Phase 2.0) Ref. Lr. No. F. 24-51/2014-U, Policy (TNMulti-Gen), Dept. of Education, Government of India

Funding

The financial support provided to the Rashtriya Uchchatar Shiksha Abhiyan (RUSA-Phase 2.0) Ref. Lr. No. F. 24-51/2014-U, Policy (TNMulti-Gen), Dept. of Education, Government of India

Author information

Authors and Affiliations

Authors

Contributions

In this manuscript, all persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance in the Journal of Polymers and the Environment. Mayakrishnan Arumugam: Conceptualization, Methodology, Investigation; Writing-Original Draft and Formal analysis, Balaji Murugesan: Validation, Resources, Formal analysis, Reviewing and Editing, Dhilipkumar Chinnalagu: Methodology, Formal analysis, Premkumar Balasekar: Resources, Formal analysis and Editing, Yurong Cai: Formal analysis, Reviewing and Editing, Ponnurengam Malliappan Sivakumar: Resources, Formal analysis, Gowri Rengasamy: Methodology, Formal analysis, Krithikapriya Chinniah: Methodology, Formal analysis, Sundrarajan Mahalingam: Validation, Visualization, Supervision.

Corresponding author

Correspondence to Sundrarajan Mahalingam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4206 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugam, M., Murugesan, B., Chinnalagu, D. et al. Electrospun Silk Fibroin and Collagen Composite Nanofiber Incorporated with Palladium and Platinum Nanoparticles for Wound Dressing Applications. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03261-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03261-1

Keywords

Navigation