Skip to main content
Log in

Effect of crystal orientation and temperature on the mechanical properties and fracture mechanism of silicon carbide nanowires

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silicon carbide nanowires (SiC NWs) are widely used as reinforcing materials in composite materials based on ceramics, metals, and polymers, and their high-temperature mechanical properties have become a focus of attention. In this paper, the effect of temperature and crystal orientation on the tensile mechanical behavior of SiC NWs was explored through molecular dynamics simulation. It is observed that the fracture mode and mechanical properties of SiC NWs express a significant temperature dependence. Both critical stress and Young's modulus of nanowires with different orientations decrease with increasing temperature and the [111]- and [112]-oriented nanowires exhibit brittle fracture characteristics at low temperatures and become ductile fractures at high temperatures. The transition temperature for ductile–brittle fracture is between 1300-1800 K. The fracture surfaces of SiC NWs with different orientations are all {111} planes at low temperatures. This study provides theoretical support for SiC NWs' laboratory growth and toughening mechanism research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Chen S, Li W, Li X, Yang W (2019) One-dimensional SiC nanostructures: Designed growth, properties, and applications. Prog Mater Sci 104:138–214

    Article  CAS  Google Scholar 

  2. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  CAS  Google Scholar 

  3. Guo C, Cheng LF, Ye F (2019) Research and application development of SiC nanowires. Mater China 38:831–842+886

    CAS  Google Scholar 

  4. Zhang Y, Han X, Zheng K, Zhang Z, Zhang X, Fu J, Ji Y, Hao Y, Guo X, Wang ZL (2007) Direct observation of super-plasticity of Beta-SiC nanowires at low temperature. Adv Func Mater 17:3435–3440

    Article  CAS  Google Scholar 

  5. Han XD, Zhang YF, Zheng K, Zhang XN, Zhang Z, Hao YJ, Guo XY, Yuan J, Wang ZL (2007) Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett 7:452–457

    Article  CAS  Google Scholar 

  6. Cheng G, Chang T-H, Qin Q, Huang H, Zhu Y (2014) Mechanical properties of silicon carbide nanowires: Effect of size-dependent defect density. Nano Lett 14:754–758

    Article  CAS  Google Scholar 

  7. Yang W, Araki H, Tang C, Thaveethavorn S, Kohyama A, Suzuki H, Noda T (2005) Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv Mater 17:1519–1523

    Article  CAS  Google Scholar 

  8. Mandal T (2012) Strain induced phase transition in CdSe nanowires: Effect of size and temperature. Appl Phys Lett 101(2):021906

  9. Wang Z, Zu X, Gao F, Weber WJ (2008) Atomistic simulations of the mechanical properties of silicon carbide nanowires. Phys Rev B 77:224113

    Article  Google Scholar 

  10. Konuk M, Durukanoğlu S (2012) Strain-induced structural transformation of a silver nanowire. Nanotechnology 23:245707

    Article  Google Scholar 

  11. Kulkarni AJ, Zhou M, Ke FJ (2005) Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16:2749

    Article  CAS  Google Scholar 

  12. Makeev MA, Srivastava D, Menon M (2006) Silicon carbide nanowires under external loads: An atomistic simulation study. Phys Rev B 74:16

  13. Wang J, Lu C, Wang Q, Xiao P, Ke F, Bai Y, Shen Y, Liao X, Gao H (2012) Influence of microstructures on mechanical behaviours of SiC nanowires: a molecular dynamics study. Nanotechnology 23:025703

    Article  Google Scholar 

  14. Peng HY, Zhou XT, Lai HL, Wang N, Lee ST (2000) Microstructure observations of silicon carbide nanorods. J Mater Res 15:2020–2026

    Article  CAS  Google Scholar 

  15. Attolini G, Rossi F, Bosi M, Watts BE, Salviati G (2011) The effect of substrate type on SiC nanowire orientation. J Nanosci Nanotechnol 11:4109–4113

    Article  CAS  Google Scholar 

  16. Krishnan B, Thirumalai RVKG, Koshka Y, Sundaresan S, Levin I, Davydov AV, Merrett JN (2011) Substrate-dependent orientation and polytype control in SiC nanowires grown on 4H-SiC substrates. Cryst Growth Des 11:538–541

    Article  CAS  Google Scholar 

  17. Sundaresan SG, Davydov AV, Vaudin MD, Levin I, Maslar JE, Tian Y-L, Rao MV (2007) Growth of silicon carbide nanowires by a microwave heating-assisted physical vapor transport process using group VIII metal catalysts. Chem Mater 19:5531–5537

    Article  CAS  Google Scholar 

  18. Tang M, Yip S (1994) Lattice instability in β-SiC and simulation of brittle fracture. J Appl Phys 76:2719–2725

    Article  CAS  Google Scholar 

  19. Kikuchi H, Kalia RK, Nakano A, Vashishta P, Branicio PS, Shimojo F (2005) Brittle dynamic fracture of crystalline cubic silicon carbide (3C-SiC) via molecular dynamics simulation. J Appl Phys 98:103524

    Article  Google Scholar 

  20. Tang M, Yip S (1995) Atomistic simulation of thermomechanical properties of β-SiC. Phys Rev B 52:15150

    Article  CAS  Google Scholar 

  21. Porter LJ, Li J, Yip S (1997) Atomistic modeling of finite-temperature properties of β-SiC. I. Lattice vibrations, heat capacity, and thermal expansion. J Nucl Mater 246:53–59

    Article  CAS  Google Scholar 

  22. Mizushima K, Tang M, Yip S (1998) Toward multiscale modelling: the role of atomistic simulations in the analysis of Si and SiC under hydrostatic compression. J Alloy Compd 279:70–74

    Article  CAS  Google Scholar 

  23. Gao F, Weber WJ, Posselt M, Belko V (2004) Atomistic study of intrinsic defect migration in 3C-SiC. Phys Rev B 69:245205

    Article  Google Scholar 

  24. Tersoff J (1989) Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys Rev B 39:5566

    Article  CAS  Google Scholar 

  25. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  26. Yang Z, Lu Z, Zhao Y-P (2009) Shape effects on the yield stress and deformation of silicon nanowires: A molecular dynamics simulation. J Appl Phys 106:023537

    Article  Google Scholar 

  27. Guénolé J, Brochard S, Godet J (2011) Unexpected slip mechanism induced by the reduced dimensions in silicon nanostructures: Atomistic study. Acta Mater 59:7464–7472

    Article  Google Scholar 

  28. Guénolé J, Godet J, Brochard S (2011) Deformation of silicon nanowires studied by molecular dynamics simulations. Modell Simul Mater Sci Eng 19:074003

    Article  Google Scholar 

  29. Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press

    Book  Google Scholar 

  30. Koh S, Lee H, Lu C, Cheng Q (2005) Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys Rev B 72:085414

    Article  Google Scholar 

  31. Liu Q, Shen S (2012) On the large-strain plasticity of silicon nanowires: effects of axial orientation and surface. Int J Plast 38:146–158

    Article  CAS  Google Scholar 

  32. Fu B, Chen N, Xie Y, Ye X, Gu X (2013) Size and temperature dependence of the tensile mechanical properties of zinc blende CdSe nanowires. Phys Lett A 377:2681–2686

    Article  CAS  Google Scholar 

  33. Li W, Wang T (1999) Elasticity, stability, and ideal strength of β-SiC in plane-wave-based ab initio calculations. Phys Rev B 59:3993–4001

    Article  CAS  Google Scholar 

  34. Lambrecht WRL, Segall B, Methfessel M, van Schilfgaarde M (1991) Calculated elastic constants and deformation potentials of cubic SiC. Phys Rev B 44:3685–3694

    Article  CAS  Google Scholar 

  35. Petrovic JJ, Milewski JV, Rohr DL, Gac FD (1985) Tensile mechanical properties of SiC whiskers. J Mater Sci 20:1167–1177

    Article  Google Scholar 

  36. Kang K, Cai W (2010) Size and temperature effects on the fracture mechanisms of silicon nanowires: molecular dynamics simulations. Int J Plast 26:1387–1401

    Article  CAS  Google Scholar 

  37. Munshi MAM, Majumder S, Motalab M, Saha S (2019) Insights into the mechanical properties and fracture mechanism of cadmium telluride nanowire. Mater Res Express 6:105083

    Article  CAS  Google Scholar 

  38. Yang Z, Lu Z, Zhao Y-P (2009) Atomistic simulation on size-dependent yield strength and defects evolution of metal nanowires. Comput Mater Sci 46:142–150

    Article  CAS  Google Scholar 

  39. Lu H, Zhang J, Fan J (2011) Molecular dynamics study of the tensile mechanical behavior of metallic nanowires with different orientation. Guti Lixue Xuebao/Acta Mech Solida Sin 32:433–439

    CAS  Google Scholar 

  40. Ma B, Rao Q-H, He Y-H (2014) Effect of crystal orientation on tensile mechanical properties of single-crystal tungsten nanowire. Trans Nonferrous Metals Soc China 24:2904–2910

    Article  CAS  Google Scholar 

  41. Zhang J-M, Ma F, Xu K-W, Xin X-T (2003) Anisotropy analysis of the surface energy of diamond cubic crystals. Surf Interface Anal 35:805–809

    Article  CAS  Google Scholar 

  42. Tsuzuki H, Rino JP, Branicio PS (2011) Dynamic behaviour of silicon carbide nanowires under high and extreme strain rates: a molecular dynamics study. J Phys D Appl Phys 44:055405

    Article  Google Scholar 

  43. Chowdhury EH, Rahman MH, Jayan R, Islam MM (2021) Atomistic investigation on the mechanical properties and failure behavior of zinc-blende cadmium selenide (CdSe) nanowire. Comput Mater Sci 186:110001

    Article  CAS  Google Scholar 

  44. Pial TH, Rakib T, Mojumder S, Motalab M, Akanda MAS (2018) Atomistic investigations on the mechanical properties and fracture mechanisms of indium phosphide nanowires. Phys Chem Chem Phys 20:8647–8657

    Article  CAS  Google Scholar 

  45. Adachi S (2017) III-V ternary and quaternary compounds. In: Kasap S, Capper P (eds) Springer Handbook of Electronic and Photonic Materials. Springer International Publishing, Cham, pp 1–1

    Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (92160202), the National Key Research and Development Plan of China (2021YFB3703100), and the Ningbo key technology Research and Development(2023T007).

Funding

This research work was supported by the National Natural Science Foundation of China (92160202).

Author information

Authors and Affiliations

Authors

Contributions

Mengan Cao: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Validation, Visualization, Writing – original draft. Zhaofeng Chen: Funding acquisition, Project administration, Supervision, Validation, Writing – review & editing. Le Lu: Validation, Writing – review & editing. Shijie Chen: Writing – review & editing. Zhudan Ma: Writing – review & editing. Lixai Yang: Funding acquisition, Writing – review & editing.

Corresponding author

Correspondence to Zhaofeng Chen.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Chen, Z., Lu, L. et al. Effect of crystal orientation and temperature on the mechanical properties and fracture mechanism of silicon carbide nanowires. J Nanopart Res 25, 242 (2023). https://doi.org/10.1007/s11051-023-05899-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05899-9

Keywords

Navigation