Skip to main content

Advertisement

Log in

A study of the physicochemical properties of silver nanoparticles dispersed in various water chemistry settings

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

A Correction to this article was published on 07 February 2024

This article has been updated

Abstract

The manufacture and application of silver nanoparticles (Ag NPs) will inevitably result in their release and exposure to aquatic systems such as rivers and wastewater. The ultimate purpose of this study is to provide a framework for evaluating and grasping how Ag NPs react when exposed to various water chemistry settings. In addition to pure water, four synthetic media with varied pH, total dissolved solids (TDS), alkalinity (Alk), and chemical oxygen demands (COD) were used; all five media contained an initial 30 mg/l of Ag NPs. These Ag NPs’ absorption intensity, morphology, hydrodynamic diameter (HDD), zeta (ξ) potential, and polydespersivity index (PDI) were all measured. Results indicated Ag NPs are guaranteed to be present in all media since a surface plasmon resonance peak (SPR) was maintained at a wavelength of about 430 nm. The findings also demonstrated that, in contrast to other aspects of water chemistry, the media’s pH had the largest bearing on particle behavior, with Ag NPs at pH 2.0 and 12.0 failing to exhibit a distinguishable shape with HDDs of 487.85 nm and 769.6 nm, respectively. TDS produced by sodium chloride (NaCl) and alkalinity appeared to have similar actions. Because of the improved steric stability generated by organic fraction adsorption on the capping of the Ag NPs in the presence of COD, more spherical and closely packed Ag NPs were observed. Overall, the current work provides some fresh insights into the impacts of water chemistry on particle stability, aggregation, distribution, and survival, as well as data on how aggregation and Ag NPs interact and jointly decide particle fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this investigation are available upon reasonable request from the corresponding author.

Change history

References  

  1. Gurunathan S, Park JH, Han JW, Kim JH (2015) Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomed 10:4203. https://doi.org/10.2147/IJN.S83953

    Article  CAS  Google Scholar 

  2. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. https://doi.org/10.1007/s00253-009-2159-5

    Article  CAS  PubMed  Google Scholar 

  3. Mukherjee P, Ahmad A, Mandal DD, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519. https://doi.org/10.1021/nl0155274

  4. Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266. https://doi.org/10.1021/es902240k

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. https://doi.org/10.1021/es7029637

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914. https://doi.org/10.1021/es2037405

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE Jr, Tanguay RL, Di Giulio RT, Bernhardt ES (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47(23):13440–13448. https://doi.org/10.1021/es403527n

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Auvinen H, Gagnon V, Rousseau DP, Du Laing G (2017) Fate of metallic engineered nanomaterials in constructed wetlands: prospection and future research perspectives. Rev Environ Sci Bio/Technol 16:207–222. https://doi.org/10.1007/s11157-017-9427-0

    Article  Google Scholar 

  9. Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2016) Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview (doi.org/). Aquat Toxicol 170:162–174. https://doi.org/10.1016/j.aquatox.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  10. Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20(5):595–601. https://doi.org/10.1016/j.drudis.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  11. Feng Y, Deng T, Lai X, Feng Z, Lyu M, Wang S (2020) Effect of properties of silver nanoparticles coated with polar material and the antibacterial activity on marine pathogenic bacteria. J Nanomater 2020:1–11. https://doi.org/10.1155/2020/172830

    Article  Google Scholar 

  12. Yu SJ, Yin YG, Liu JF (2013) Silver nanoparticles in the environment. Env Sci Process Impacts 15:78–92. https://doi.org/10.1039/C2EM30595J. (Search in Google Scholar PubMed)

    Article  Google Scholar 

  13. Jiang J, Wang X, Zhang Y, Zhang J, Gu X, He S, Duan S, Ma J, Wang L, Luo P (2022) The aggregation and dissolution of citrate−coated AgNPs in high ammonia nitrogen wastewater and sludge from UASB−anammox reactor. Int J Environ Res Public Health 19:9502. https://doi.org/10.3390/ijerph19159502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dorjnamjin D, Ariunaa M, Shim YK (2008) Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci 9:807–820. https://doi.org/10.3390/ijms9050807. (Search in Google ScholarPubMed PubMed Central)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eltz FZ, Vebber MC, Aguzzoli C, Machado G, Da Silva Crespo J, Giovanela M (2020) Preparation, characterization and application of polymeric thin films containing silver and copper nanoparticles with bactericidal activity. J Environ Chem Eng 8:1–14 ([Google Scholar] [CrossRef])

    Article  Google Scholar 

  16. Wang R, Zhao P, Yu R, Jiang J, Liang R, Liu G (2022) Cost-efficient collagen fibrous aerogel cross-linked by Fe (III) /silver nanoparticle complexes for simultaneously degrading antibiotics, eliminating antibiotic-resistant bacteria, and adsorbing heavy metal ions from wastewater. Sep Purif Technol 303:122209 ([Google Scholar] [CrossRef])

    Article  CAS  Google Scholar 

  17. Najafpoor A, Norouzian-Ostad R, Alidadi H, Rohani-Bastami T, Davoudi M, Barjasteh-Askari F, Zanganeh J (2020) Effect of magnetic nanoparticles and silver-loaded magnetic nanoparticles on advanced wastewater treatment and disinfection. J Mol Liq 303:112640 ([Google Scholar] [CrossRef])

    Article  CAS  Google Scholar 

  18. EsmaeiliBidhendi M, Parandi E, MahmoudiMeymand M, Sereshti H, RashidiNodeh H, Joo SW, Vasseghian Y, MahmoudiKhatir N, Rezania S (2023) Removal of lead ions from wastewater using magnesium sulfide nanoparticles caged alginate microbeads. Environ. Res. 216:114416 ([Google Scholar] [CrossRef])

    Article  CAS  Google Scholar 

  19. Prosposito P, Burratti L, Venditti I (2020) Silver nanoparticles as colorimetric sensors for water pollutants. Chemosensors 8:26 ([Google Scholar] [CrossRef])

    Article  CAS  Google Scholar 

  20. Kodoth AK, Badalamoole V (2020) Silver nanoparticle-embedded pectin-based hydrogel for adsorptive removal of dyes and metal ions. Polym Bull 77:541–564 ([Google Scholar] [CrossRef])

    Article  CAS  Google Scholar 

  21. Zhang X, Servos MR, Liu J (2012) Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization. J Am Chem Soc 134(24):9910–9913. https://doi.org/10.1021/ja303787e

    Article  CAS  PubMed  Google Scholar 

  22. Radziuk D, Skirtach A, Sukhorukov G, Shchukin D, Möhwald H (2007) Stabilization of silver nanoparticles by polyelectrolytes and poly (ethylene glycol). Macromol Rapid Commun 28(7):848–855. https://doi.org/10.1002/marc.200600895

    Article  CAS  Google Scholar 

  23. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 1;42(23):8959–8964. https://doi.org/10.1021/es801785m

  24. Piccapietra F, Allué CG, Sigg L, Behra R (2012) Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46(13):7390–7397. https://doi.org/10.1021/es300734m

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1–17. https://doi.org/10.1007/s11051-013-1692-4

    Article  Google Scholar 

  26. Maťátková O, Michailidu J, Miškovská A, Kolouchová I, Masák J, Čejková A (2022) Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv 58:107905

    Article  PubMed  Google Scholar 

  27. Al-zou’by JY, Alzoubi FY, Migdadi AB, Al-Zboon K (2022) Evaluating the impacts of manufactured silver nanoparticles dispersed in various wastewaters on biochemical oxygen demand kinetics of the resulting wastewaters. Nanotechnol Environ Eng 8(1):119–129. https://doi.org/10.1007/s41204-022-00260-2

    Article  CAS  Google Scholar 

  28. El Badawy AM, Scheckel KG, Suidan M, Tolaymat T (2012) The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci Total Environ 429:325–331. https://doi.org/10.1016/j.scitotenv.2012.03.041

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Fernando I, Zhou Y (2019) Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere 216:297–305. https://doi.org/10.1016/j.chemosphere.2018.10.122

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914. https://doi.org/10.1021/es2037405

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Mwilu SK, El Badawy AM, Bradham K, Nelson C, Thomas D, Scheckel KG, Rogers KR (2013) Changes in silver nanoparticles exposed to human synthetic stomach fluid: effects of particle size and surface chemistry. Sci Total Environ 447:90–98. https://doi.org/10.1016/j.scitotenv.2012.12.036

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43(19):7270–7276. https://doi.org/10.1021/es900185p

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Li X, Lenhart JJ, Walker HW (2010) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26(22):16690–16698. https://doi.org/10.1021/la101768n

    Article  CAS  PubMed  Google Scholar 

  34. Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M, Kumar ST, Rao MV (2015) Catalytic degradation of organic dyes using synthesized silver nanoparticles: a green approach. J Bioremediation Biodegredation 6(5):1. https://doi.org/10.4172/2155-6199.1000313

    Article  CAS  Google Scholar 

  35. Lee BG, Griscom SB, Lee JS, Choi HJ, Koh CH, Luoma SN, Fisher NS (2000) Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science 287(5451):282–284. https://doi.org/10.1126/science.287.5451.282

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Li X, Lenhart JJ, Walker HW (2012) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28(2):1095–1104. https://doi.org/10.1021/la202328n

    Article  CAS  PubMed  Google Scholar 

  37. Sawyer CN, McCarty PL, Parkin GF (2003) Chemistry for environmental engineering and science. McGraw-Hill (http://repository.vnu.edu.vn/handle/VNU_123/90733)

    Google Scholar 

  38. Zhang H, Oyanedel-Craver V (2012) Evaluation of the disinfectant performance of silver nanoparticles in different water chemistry conditions. J Environ Eng 138(1):58–66. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000460

    Article  CAS  Google Scholar 

  39. Alzoubi FY, Al-zou’by JY, Aljarrah IA et al (2021) Physicochemical characteristics of silver nanoparticles: influence of carbonate alkalinity. Nanotechnol Environ Eng 6:68. https://doi.org/10.1007/s41204-021-00162-9

    Article  CAS  Google Scholar 

  40. Baird R, Bridgewater L (2017) Standard methods for the examination of water and wastewater. 23rd edition. Washington, D.C., American Public Health Association

  41. Stankus DP, Lohse SE, Hutchison JE, Nason JA (2011) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45(8):3238–3244. https://doi.org/10.1021/es102603p

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Furman O, Usenko S, Lau BL (2013) Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Environ Sci Technol 47(3):1349–1356. https://doi.org/10.1021/es303275g

    Article  CAS  PubMed  Google Scholar 

  43. Lynch I, Dawson KA, Lead JR, Valsami-Jones E (2014) Macromolecular coronas and their importance in nanotoxicology and nanoecotoxicology. Front Nanosci 7:127–156. https://doi.org/10.1016/B978-0-08-099408-6.00004-9. (Elsevier)

    Article  Google Scholar 

  44. Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48(16):8946–8962. https://doi.org/10.1021/es502342r

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Lau BL, Hockaday WC, Ikuma K, Furman O, Decho AW (2013) A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics. Colloids Surf, A 435:22–27. https://doi.org/10.1016/j.colsurfa.2012.11.065

    Article  CAS  Google Scholar 

  46. Kwamena NOA, Reid JP, Press CRC (2005) Aerosols. Colloid Sci: Princ, Methods Appl 10:219–244

    Google Scholar 

  47. Zha L, Hu J, Wang C, Fu S, Luo M (2002) The effect of electrolyte on the colloidal properties of poly (N-isopropylacrylamide-co-dimethylaminoethylmethacrylate) microgel latexes. Colloid Polym Sci 280:1116–1121. https://doi.org/10.1007/s00396-002-0734-8

    Article  CAS  Google Scholar 

  48. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89. https://doi.org/10.1007/s11051-008-9446-4

    Article  CAS  Google Scholar 

  49. Quintero-Quiroz C, Acevedo N, Zapata-Giraldo J, Botero LE, Quintero J, Zárate-Trivinõ D et al (2019) Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomaterials Res 23:27. https://doi.org/10.1186/s40824-019-0173-y

    Article  Google Scholar 

  50. Li Z, Wang Y, Yu Q (2010) Significant parameters in the optimization of synthesis of silver nanoparticles by chemical reduction method. J Mater Eng Perform 19:252–256. https://doi.org/10.1007/s11665-009-9486-7

    Article  CAS  Google Scholar 

  51. Alqadi MK, Abo Noqtah OA, Alzoubi FY, Alzouby J, Aljarrah K (2014) pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater Sci-Pol 32:107–111. https://doi.org/10.2478/s13536-013-0166-9

    Article  ADS  CAS  Google Scholar 

  52. Alzoubi FY, Al-zou’by JY, Theban SK, Alqadi MK, Al-khateeb HM, AlSharo ES (2021) Size, stability, and aggregation of citrates-coated silver nanoparticles: contribution of background electrolytes. Nanotechnol Environ Eng 6:1–7. https://doi.org/10.1007/s41204-021-00165-6

    Article  CAS  Google Scholar 

  53. Verma SK, Jha E, Panda PK, Thirumurugan A, Patro S, Parashar SKS, Suar M (2018) Molecular insights to alkaline based bio-fabrication of silver nanoparticles for inverse cytotoxicity and enhanced antibacterial activity. Mater Sci Eng, C 92:807–818. https://doi.org/10.1016/j.msec.2018.07.037

    Article  CAS  Google Scholar 

  54. Baalousha M (2017) Effect of nanomaterial and media physicochemical properties on nanomaterial aggregation kinetics. NanoImpact 6:55–68. https://doi.org/10.1016/j.impact.2016.10.005

    Article  Google Scholar 

  55. Afshinnia K, Sikder M, Cai B, Baalousha M (2017) Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics. J Colloid Interface Sci 487:192–200. https://doi.org/10.1016/j.jcis.2016.10.037

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  57. Fu LM, Hsu JH, Shih MK, Hsieh CW, Ju WJ, Chen YW, Lee BH, Hou CY (2021) Process optimization of silver nanoparticle synthesis and its application in mercury detection. Micromachines 12:1123

    Article  PubMed  PubMed Central  Google Scholar 

  58. Riaz M, Mutreja V, Sareen S et al (2021) Exceptional antibacterial and cytotoxic potency of monodisperse greener AgNPs prepared under optimized pH and temperature. Sci Rep 11:2866. https://doi.org/10.1038/s41598-021-82555-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rolim WR et al (2019) Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl Surf Sci 463:66–74

    Article  ADS  CAS  Google Scholar 

  60. Sartori P, Delamare APL, Machado G, Devine DM, Crespo JS, Giovanela M (2023) Synthesis and characterization of silver nanoparticles for the preparation of chitosan pellets and their application in industrial wastewater disinfection. Water 15:190. https://doi.org/10.3390/w15010190

    Article  CAS  Google Scholar 

  61. Singh P, Bodycomb J, Travers B, Tatarkiewicz K, Travers S, Matyas GR, Beck Z (2019) Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology. Int J Pharm 566:680–686. https://doi.org/10.1016/j.ijpharm.2019.06.013

    Article  CAS  PubMed  Google Scholar 

  62. Rijckaert H, De Roo J, Van Zele M, Banerjee S, Huhtinen H, Paturi P, Bennewitz J, Billinge SJ, Bäcker M, De Buysser K (2018) Pair distribution function analysis of ZrO2 nanocrystals and insights in the formation of ZrO2-YBa2Cu3O7 nanocomposites. Materials 11:1066. https://doi.org/10.3390/ma11071066

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bhattacharjee S (2016) DLS and zeta potential–what they are and what they are not? J Control Release 235:337–351. https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  64. Feng Y, Deng T, Lai X, Feng Z, Lyu M, Wang S (2020) Effect of properties of silver nanoparticles coated with polar material and the antibacterial activity on marine pathogenic bacteria. J Nanomater 2020:11. https://doi.org/10.1155/2020/1728305

    Article  CAS  Google Scholar 

  65. Axson JL, Stark DI, Bondy AL, Capracotta SS, Maynard AD, Philbert MA, Bergin IL, Ault AP (2015) Rapid kinetics of size and pH-dependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid. J Phys Chem C Nanomater Interfaces 119(35):20632–20641. https://doi.org/10.1021/acs.jpcc.5b03634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen Q, Cho H, Manthiram K, Yoshida M, Ye X, Alivisatos AP (2015) Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy. ACS Cent Sci 1(1):33–39. https://doi.org/10.1021/acscentsci.5b00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang F, Allen A, Johnston-Peck A, Liu J, Pettibone J (2019) Transformation of engineered nanomaterials through the prism of silver sulfidation, Nanoscale Advances, [online], https://doi.org/10.1039/C8NA00103K (Accessed June 25, 2023)

  68. Peretyazhko TS, Zhang QB, Colvin VL (2014) Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48:11954–11961

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Zhou W, Liu Y-L, Stallworth AM, Ye C, Lenhart JJ (2016) Effects of pH, electrolyte, humic acid, and light exposure on the long-term fate of silver nanoparticles. Environ Sci Technol 50:12214–12224

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Phanjom P, Ahmed G (2017) Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No 1846) and their antibacterial effect. Adv Nat Sci Nanosci Nanotechnol 8:10. https://doi.org/10.1088/2043-6254/aa92bc. ([CrossRef] [GoogleScholar])

    Article  CAS  Google Scholar 

  71. Mohammed Fayaz A, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles-an effect of temperature on the size of particles. Colloids Surf B Biointerfaces 74:123–126. https://doi.org/10.1016/j.colsurfb.2009.07.002. ([PubMed] [CrossRef] [GoogleScholar])

    Article  CAS  PubMed  Google Scholar 

  72. Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE Jr (2013) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47(11):5738–5745. https://doi.org/10.1021/es400396f

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmidmediated silver resistance in Escherichia coli. Appl Environ Microbiol 64(12):5042–5045

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ho CM, Yau SKW, Lok CN, So MH, Che CM (2010) Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Chem Asian J 5(2):285–293

    Article  CAS  PubMed  Google Scholar 

  75. Zhang L, Li X, He R, Wu L, Zhang L, Zeng J (2015) Chloride-induced shape transformation of silver nanoparticles in a water environment. Environ Pollut 204:145–151. https://doi.org/10.1016/j.envpol.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  76. An J, Tang B, Zheng X, Zhou J, Dong F, Xu S et al (2008) Sculpturing effect of chloride ions in shape transformation from triangular to discal silver nanoplates. Deakin University. J Contribution. https://hdl.handle.net/10536/DRO/DU:30095947

  77. Im SH, Lee YT, Wiley B, Xia Y (2005) Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed 44(14):2154–2157. https://doi.org/10.1002/anie.200462208

    Article  CAS  Google Scholar 

  78. Cervantes-Avilés P, Huang Y, Keller AA (2019) Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater. Water Res 166:115072. https://doi.org/10.1016/j.watres.2019.115072

    Article  CAS  PubMed  Google Scholar 

  79. Naranjo LP, Hernandez HM, Cespedes JH, Echeverry CE (2016) Optic method to determine the organic matter level on water using phthalate potassium. In Latin America Optics and Photonics Conference. OSA. https://doi.org/10.1364/laop.2016.ltu3a.3

  80. Min GK, Bevan MA, Prieve DC, Patterson GD (2002) Light scattering characterization of polystyrene latex with and without adsorbed polymer. Colloids Surf A Physicochem Eng Asp 202:9–21. https://doi.org/10.1016/S0927-7757(01)01060-3

    Article  CAS  Google Scholar 

  81. Delay M, Dolt T, Woellhaf A, Sembritzki R, Frimmel FH (2011) Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength. J Chromatogr A 1218:4206–4212. https://doi.org/10.1016/j.chroma.2011.02.074

    Article  CAS  PubMed  Google Scholar 

  82. Gutierrez L, Schmid A, Zaouri N, Garces D, Croue JP (2020) Colloidal stability of capped silver nanoparticles in natural organic matter-containing electrolyte solutions. NanoImpact 19:100242. https://doi.org/10.1016/j.impact.2020.100242

    Article  Google Scholar 

  83. Ali IAM, Ahmed AB, Al-Ahmed HI (2023) Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin. Sci Rep 13:2256. https://doi.org/10.1038/s41598-023-29412-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jordan’s Ministry of Higher Education and Scientific Research’s Scientific Research Support Fund (SRSF) (Project WE/1/6/2021) and Al-Balqa Applied University for their technical assistance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jehad.Y. Al-Zou’by.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 395 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zou’by, J., Alsamarraie, L.A. & Al-Zboon, K.K. A study of the physicochemical properties of silver nanoparticles dispersed in various water chemistry settings. J Nanopart Res 25, 239 (2023). https://doi.org/10.1007/s11051-023-05895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05895-z

Keywords

Navigation