Skip to main content
Log in

Spatial graph structure estimation of nanoparticles using centroid-to-contour distance analysis and deep encoder framework

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanotechnology is increasingly being used in several application areas for deriving material properties through nanostructure control. Most nanoparticle images are obtained using high-magnification electron microscopy. However, processing numerous nanoparticle images and improving accuracy requires considerable time and labor. A number of studies focused on precisely assessing the overlapping features of nanoparticle images. For correlation and reliable discrimination of overlapped nanoparticles, this study proposed a framework using a deep-learning-based encoder and centroid-to-contour distance analysis. In the proposed framework, specialized preprocessing was used to divide an image into many images, and a convolutional neural network (CNN)-based encoder was used to derive the properties of nanoparticles included in the image. The resulting characteristics were used to estimate the center point of each nanoparticle through the proposed centroid-to-contour distance approach. Then, a nanoparticle spatial structure graph was generated using this analysis. The nanoparticle structure graph of the proposed framework clearly maps the overlapping relationship between nanoparticles. Experiments proved that the proposed framework more accurately assesses the nanoparticle structure than conventional algorithms do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shu Y, Lin X, Qin H, Hu Z, Jin Y, Pen X (2020) Quantum dots for display applications. Angew Chem 50:22496–22507. https://doi.org/10.1002/ange.202004857

    Article  Google Scholar 

  2. Amendola V, Pilot R, Frasconi M, Marrago O, Iati M (2017) Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter 29:203002. https://doi.org/10.1088/1361-648X/aa60f3

    Article  Google Scholar 

  3. Wang Z (2016) A new approach for segmentation and quantification of cells or nanoparticles. IEEE Trans Industr Inf 12(3):962–971. https://doi.org/10.1109/TII.2016.2542043

    Article  Google Scholar 

  4. Muneesawang P, Sirisathitkul C (2015) Size measurement of nanoparticle assembly using multilevel segmented TEM images. J Nanomater 16(1):58. https://doi.org/10.1155/2015/790508

    Article  CAS  Google Scholar 

  5. Singh S (2013) Microscopic image analysis of nanoparticles by edge detection using ant colony optimization. IOSR J Comput Eng 11(3):84–89

    Article  Google Scholar 

  6. Wu Y, Wang W, Zhang F, Xiao Z, Wu J (2018) Nanoparticle size measurement method based on improved watershed segmentation. EEET ‘18: Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology 232–237. https://doi.org/10.1145/3277453.3286087

  7. Jara-Lugo L, Gutierrcz J, Gonzalez-Navarro F, Curiel-Alvarez M, Perez-Landeros O, Radnev-Nedev N (2022) Nanoparticles diameter characterization using image analysis methodology. 2022 IEEE Mexican International Conference on Computer Science (ENC). https://doi.org/10.1109/TPAMI.2012.163

  8. Kaya E, Kaya O, Alkan G, Gurmen S, Stopic S, Fridrich B (2020) New proposal for size and size-distribution evaluation of nanoparticles synthesized via ultrasonic spray pyrolysis using search algorithm based on image-processing technique. Materials 13(1):38. https://doi.org/10.3390/ma13010038

    Article  CAS  Google Scholar 

  9. Khairunissa M, Lee H (2022) Effective quantum mechanics–embedded nanoparticle occlusion analysis framework. J Nanopart Res 24:133. https://doi.org/10.1007/s11051-022-05517-0

    Article  Google Scholar 

  10. Bi X, Lee S, Ranville JF, Sattigeri P, Spanias A, Herckes P, Westerhoff P (2014) Quantitative resolution of nanoparticle sizes using single particle inductively coupled plasma mass spectrometry with the K-means clustering algorithm. J Anal At Spectrom 29:1630–1639. https://doi.org/10.1039/C4JA00109E

    Article  CAS  Google Scholar 

  11. Song N, Park K, Lee I, Huh H (2009) Uncertainty estimation of nanoparticle size distribution from a finite number of data obtained by microscopic analysis. Metrologia 46(5):480. https://doi.org/10.1088/0026-1394/46/5/012

    Article  CAS  Google Scholar 

  12. Bsecond A, Yon J, Ouf FX, Ferry D, Delhaye D, Gaffie D (2014) Automated determination of aggregate primary particle size distribution by TEM image analysis: application to soot. Aerosol Sci Technol 48(8):831–841. https://doi.org/10.1080/02786826.2014.932896

    Article  CAS  Google Scholar 

  13. Zafari S, Murashkina M, Eerola SJ, Kalviainen H, Gaario H (2020) Resolving overlapping convex objects in silhouette images by concavity analysis and Gaussian process. J Visual Commu Image Represent 73:102962. https://doi.org/10.1016/j.jvcir.2020.102962

    Article  Google Scholar 

  14. Dastanpour R, Boone JM, Rogak SN (2016) Automated primary particle sizing of nanoparticle aggregates by TEM image analysis. Powder Technol 295:218–224. https://doi.org/10.1016/j.powtec.2016.03.027

    Article  CAS  Google Scholar 

  15. Park C, Huang JZ, Ding Y (2013) Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans Pattern Anal Mach Intell 35(3):669–681. https://doi.org/10.1109/TPAMI.2012.163

    Article  Google Scholar 

  16. Park C, Huang JZ, Huitink D, Kundu S, Mallick BK, Liang H, Ding Y (2012) A multistage, semi-automated procedure for analyzing the morphology of nanoparticles. Qual Design Issues Nanomanuf Syst 44(7):507–522. https://doi.org/10.1080/0740817X.2011.587867

    Article  Google Scholar 

  17. Kofahi YA, Lassoued W, Lee W, Roysam B (2010) Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng 57(4):841–852. https://doi.org/10.1109/TBME.2009.2035102

    Article  Google Scholar 

  18. Meng Y, Zhang Z, Yin H, Ma T (2018) Automatic detection of particle size distribution by image analysis based on local adaptive canny edge detection and modified circular Hough transform. Micron 106:34–41. https://doi.org/10.1016/j.micron.2017.12.002

    Article  CAS  Google Scholar 

  19. Zafari S, Eerola T, Sampo J, Kalviainen H, Haario H (2015) Segmentation of overlapping elliptical objects in silhouette images. IEEE Trans Image Process 24(12):5942–5952. https://doi.org/10.1109/TIP.2015.2492828

    Article  Google Scholar 

  20. Arthur D, Vassilvitskii S (2007) K-means++: the advantages of careful seeding. In: SODA 07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 1027–1035.

  21. Oh E, Lee H (2022) Effective route generation framework using quantum mechanism-based multi-directional and parallel ant colony optimization. Comput Industrial Eng 169:108309. https://doi.org/10.1016/j.cie.2022.108308

    Article  Google Scholar 

  22. Rasmussen CE (2003) Gaussian processes in machine learning. Adv Lecture Machine Learn 3176:63–71. https://doi.org/10.1007/978-3-540-28650-9_4

    Article  Google Scholar 

  23. Okunev AG, Mashukov MY, Nartova AV, Matvee AV (2020) Nanoparticle recognition on scanning probe microscopy images using computer vision and deep learning. Nanomaterials 10(7):1285. https://doi.org/10.3390/nano10071285

    Article  CAS  Google Scholar 

  24. Sun Z, Shi J, Wang J, Jiang M, Wang Z, Bai X, Wang X (2022) A deep learning-based framework for automatic analysis of the nanoparticle morphology in SEM/TEM images. Nanoscale 14:10761–10772. https://doi.org/10.1039/D2NR01029A

    Article  CAS  Google Scholar 

  25. Kharin AY (2020) Deep learning for scanning electron microscopy: synthetic data for the nanoparticles detection. Ultramicroscopy 219:113125. https://doi.org/10.1016/j.ultramic.2020.113125

    Article  CAS  Google Scholar 

  26. Zelenka C, Kamp M, Strohm K, Kadoura A, Johny J, Koch R, Kienle L (2023) Automated classification of nanoparticles with various ultrastructures and sizes via deep learning. Ultramicroscopy 245:113685. https://doi.org/10.1016/j.ultramic.2023.113685

    Article  CAS  Google Scholar 

  27. Oktay A, Gurses A (2019) Automatic detection, localization and segmentation of nano-particles with deep learning in microscopy images. Micron 120:113–119. https://doi.org/10.1016/j.micron.2019.02.009

    Article  CAS  Google Scholar 

  28. Mejias A, Calvo R, Gavilan H, Crespo J, Maojo V (2021) A deep learning approach using synthetic images for segmenting and estimating 3D orientation of nanoparticles in EM images. Comput Methods Programs Biomed 202:105958. https://doi.org/10.1016/j.cmpb.2021.105958

    Article  Google Scholar 

  29. Bals J, Epple M (2023) Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy RSC. Advances 13:2795–2802. https://doi.org/10.1039/D2RA07812K

    Article  CAS  Google Scholar 

  30. Zhang F, Wu Y, Xiao Z, Geng L, Wu J, Liu Y, Wang W (2019) Nanoparticle segmentation based on U-Net convolutional neural network. Laser Optoelectronics Progress 56(6):061005. https://doi.org/10.3788/LOP56.061005

    Article  Google Scholar 

  31. Albawi S, Mohammed T A, Al-Zawi S (2017) Understanding of a convolutional neural network. In: Int Conference Eng Technol 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186

  32. Al-Saffar A A M, Tao H, Talab M A (2018) Review of deep convolution neural network in image classification. In : International Conference on Radar, Antenna, Microwave, Electronics, Telecommu 26–31. https://doi.org/10.1109/ICRAMET.2017.8253139

  33. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  34. BigParticle.Cloud. Available online: https://www.bigparticle.cloud/index.php/datasets (accessed July 13, 2022)

  35. Atherton TJ, Kerbyson DJ (1999) Size invariant circle detection. Image Vis Comput 17(11):795–803. https://doi.org/10.1016/S0262-8856(98)00160-7

    Article  Google Scholar 

Download references

Funding

This research was supported by The Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, S. Korea (grant number: NRF-2021R1A2C 1008647).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunsoo Lee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J., Lee, H. Spatial graph structure estimation of nanoparticles using centroid-to-contour distance analysis and deep encoder framework. J Nanopart Res 25, 117 (2023). https://doi.org/10.1007/s11051-023-05772-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05772-9

Keywords

Navigation