Skip to main content
Log in

Mössbauer spectroscopy as a tool to predict the catalytic activity of the Fe3+ sites in an exchanged Fe/hydroxyapatite system

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Catalytic reactions, with iron species as the active phase, require a specific structural organization to achieve good activity and selectivity. Thus, the presence of isolated Fe3+ ions or nanoclusters, the capacity to produce Fe3+/Fe2+ couples, or certain chemisorb reactive molecules are necessary for different reactions. Therefore, if the presence of these structural properties can be demonstrated, it could be inferred that the system could be active in a determined reaction avoiding the screening of catalytic tests. In the present work, using Mössbauer spectroscopy, we have verified that exchanged Fe in hydroxyapatite can produce Fe3+/Fe2+ redox couples which are necessary to achieve good catalytic performances in the NOx, N2O, and NH3 abatement reactions. Besides, this technique allowed us to verify that isolated Fe3+ sites and Fe(III)xOy nanoclusters were able to chemisorb CO molecules. Therefore, it could be thought that Fe/hydroxyapatite system might be active in catalytic reactions in which adsorption and dissociation of CO are necessary.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Galloni MG, Campisi S, Marchetti SG, Gervasini A (2020) Environmental reactions of air-quality protection on eco-friendly iron-based catalysts. Catalysts 10:1415. https://doi.org/10.3390/catal10121415

    Article  CAS  Google Scholar 

  2. Campisi S, Palliggiano S, Gervasini A, Evangelisti C (2019) Finely iron-dispersed particles on β zeolite from solvated iron atoms: promising catalysts for NH3-SCO. J Phys Chem C 123:11723–11733. https://doi.org/10.1021/acs.jpcc.9b01474

    Article  CAS  Google Scholar 

  3. Giannakis S (2019) A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: surface functionalization, biomass treatment, combatting cancer and other medical uses. Appl Catal B Environ 248:309–319. https://doi.org/10.1016/j.apcatb.2019.02.025

    Article  CAS  Google Scholar 

  4. Pérez De Berti IO, Bengoa JF, Stewart SJ, Cagnoli MV, Pecchi G, Marchetti SG (2016) Effect of activation atmosphere in the Fischer–Tropsch Synthesis using a “quasi-model” catalyst of γ-Fe2O3 nanoparticles supported on SBA-15. J Catal 335:36–46. https://doi.org/10.1016/j.jcat.2015.12.004

    Article  CAS  Google Scholar 

  5. Zhang R, Liu N, Lei Z, Chen B (2016) Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts. Chem Rev 116:3658–3721. https://doi.org/10.1021/acs.chemrev.5b00474

    Article  CAS  Google Scholar 

  6. Kröcher O, Brandenberger S (2012) Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH3. Chimia 66:687–693. https://doi.org/10.2533/chimia.2012.687

    Article  CAS  Google Scholar 

  7. Brandenberger S, Kröcher O, Tissler A, Althoff R (2010) The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3. Appl Catal B Environ 95:348–357. https://doi.org/10.1016/j.apcatb.2010.01.013

    Article  CAS  Google Scholar 

  8. Long RQ, Yang RT (2002) Selective catalytic oxidation of ammonia to nitrogen over Fe2O3–TiO2 prepared with a sol–gel method. J Catal 207:158–165. https://doi.org/10.1006/jcat.2002.3545

    Article  CAS  Google Scholar 

  9. Thomas N, Dionysiou DD, Pillai SC (2021) Heterogeneous Fenton catalysts: a review of recent advances. J Hazard Mater 404:124082. https://doi.org/10.1016/j.jhazmat.2020.124082

    Article  CAS  Google Scholar 

  10. Lin SS, Gurol MD (1998) Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ Sci Technol 32:1417–1423. https://doi.org/10.1021/es970648k

    Article  CAS  Google Scholar 

  11. Cano LA, Cagnoli MV, Bengoa JF, Alvarez AM, Marchetti SG (2011) Effect of the activation atmosphere on the activity of Fe catalysts supported on SBA-15 in the Fischer–Tropsch Synthesis. J Catal 278:310–320. https://doi.org/10.1016/j.jcat.2010.12.017

    Article  CAS  Google Scholar 

  12. Fihri A, Len C, Varma RS, Solhy A (2017) Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord Chem Rev 347:48–76. https://doi.org/10.1016/j.ccr.2017.06.009

    Article  CAS  Google Scholar 

  13. Campisi S, Galloni MG, Marchetti SG, Auroux A, Postole G, Gervasini A (2020) Functionalized iron hydroxyapatite as eco-friendly catalyst for NH3-SCR reaction: activity and role of iron speciation on the surface. Chem Cat Chem 12:1676–1690. https://doi.org/10.1002/cctc.201901813

    Article  CAS  Google Scholar 

  14. Schiavoni M, Campisi S, Carniti P, Gervasini A, Delplanche T (2018) Focus on the catalytic performances of Cu-functionalized hydroxyapatites in NH3-SCR reaction. Appl Catal A Gen 563:43–53. https://doi.org/10.1016/j.apcata.2018.06.020

    Article  CAS  Google Scholar 

  15. Ferri M, Campisi S, Scavini M, Evangelisti C, Carniti P, Gervasini A (2019) In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite. Appl Surf Sci 475:397–409. https://doi.org/10.1016/j.apsusc.2018.12.264

    Article  CAS  Google Scholar 

  16. Pérez De Berti I, Bengoa J, Fellenz N, Mercader R, Marchetti S (2015) Mössbauer cell for low-temperature studies of catalysts under reaction conditions. Rev Sci Instrum 86:023903. https://doi.org/10.1063/1.4913382

    Article  CAS  Google Scholar 

  17. Lagarec K, Rancourt DG (1998) Recoil-Mössbauer spectral analysis software for windows. University of Ottawa, Ottawa

    Google Scholar 

  18. Blume M, Tjon JA (1968) Mössbauer spectra in a fluctuating environment. Phys Rev 165:446–456. https://doi.org/10.1103/PhysRev.165.456

    Article  Google Scholar 

  19. Khachani M, Kacimi M, Ensuque A, Piquemal J-Y, Connan C, Bozon-Verduraz F, Ziyad M (2010) Iron–calcium–hydroxyapatite catalysts: iron speciation and comparative performances in butan-2-ol conversion and propane oxidative dehydrogenation. Appl Catal A Gen 388:113–123. https://doi.org/10.1016/j.apcata.2010.08.043

    Article  CAS  Google Scholar 

  20. Li Y, Nam CT, Ooi CP (2009) J Phys:Conf Ser 187:012024 https://iopscience.iop.org/article/10.1088/1742-6596/187/1/012024

    Google Scholar 

  21. Kramer ER, Morey AM, Staruch M, Suib SL, Jain M, Budnick JI, Wei M (2013) Synthesis and characterization of iron-substituted hydroxyapatite via a simple ion-exchange procedure. J Mater Sci 48:665–673. https://doi.org/10.1007/s10853-012-6779-2

    Article  CAS  Google Scholar 

  22. Zecchina A, Geobaldo F, Lamberti C, Bordiga S, Turnes Palomino G, Otero Areán C (1996) Infrared studies of the interaction of carbon monoxide and dinitrogen with ferrisilicate MFI-type zeolites. Catal Lett 42:25–33. https://doi.org/10.1007/BF00814463

    Article  CAS  Google Scholar 

  23. Mihaylov M, Ivanova E, Chakarova K, Novachka P, Hadjiivanov K (2011) Reduced iron sites in Fe–BEA and Fe–ZSM-5 zeolites: FTIR study of CO adsorption and 12C16O–13C18O co-adsorption. Appl Catal A Gen 391:3–10. https://doi.org/10.1016/j.apcata.2010.05.014

    Article  CAS  Google Scholar 

  24. Ingalls R (1964) Electric-field gradient tensor in ferrous compounds. Phys Rev 133:A787. https://doi.org/10.1103/PhysRev.133.A787

    Article  Google Scholar 

  25. Bancroft GM, Maddock AG, Burns RG (1967) Applications of the Mössbauer effect to silicate mineralogy—I. Iron silicates of known crystal structure. Geochim Cosmochim Acta 31:2219–2246. https://doi.org/10.1016/0016-7037(67)90062-2

    Article  CAS  Google Scholar 

  26. Shinno I, Zhe L (1998) Octahedral site Fe (super 2+) quadrupole splitting distributions from the Moessbauer spectra of arrojadite. Am Mineral 83:1316–1322. https://doi.org/10.2138/am-1998-11-1220

    Article  CAS  Google Scholar 

  27. Niemantsverdriet J (2007) Spectroscopy in catalysis. An introduction, 3rd edn. Wiley https://www.perlego.com/book/2775810/spectroscopy-in-catalysis-pdf

    Book  Google Scholar 

  28. Wilkinson C, Cheetham AK, Long GJ, Battle PD, Hope DAO (1984) Polarized neutron diffraction and Mossbauer-effect study of the magnetic ordering in Wustite, FeyO. Inorg Chem 23:3136–3141. https://doi.org/10.1021/ic00188a023

    Article  CAS  Google Scholar 

  29. Stewart SJ, Cabrera AF, Fellenz NA, Mercader RC, Bengoa JF, Marchetti SG (2016) bi-magnetic iron(iii) oxide nanocrystals embedded in MCM-41 mesoporous silica. J Phys Chem C 120:2993–3000. https://doi.org/10.1021/acs.jpcc.5b10379

    Article  CAS  Google Scholar 

  30. Kefirov R, Ivanova E, Hadjiivanov K, Dzwigaj S, Che M (2008) FTIR Characterization of Fe3+ – OH groups in Fe–H–BEA zeolite: interaction with CO and NO. Catal Lett 125:209. https://doi.org/10.1007/s10562-008-9577-3

    Article  CAS  Google Scholar 

  31. Wang T, Dorner-Reisel A, Müller E (2004) Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram Soc 24:693–698. https://doi.org/10.1016/S0955-2219(03)00248-6

    Article  CAS  Google Scholar 

  32. Hadjiivanov K, Ivanova E, Kefirov R, Janas J, Plesniar A, Dzwigaj S, Che M (2010) Adsorption properties of Fe-containing dealuminated BEA zeolites as revealed by FTIR spectroscopy. Microporous Mesoporous Mater 131:1–12. https://doi.org/10.1016/j.micromeso.2009.11.034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Agencia Nacional de Promoción Científica y Tecnológica FONCyT–ANPCyT (PICT 2017-2808), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA) which allowed the development of this work.

Availability of data and material

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

Funding

ANPCyT (PICT 2017-2808).

Author information

Authors and Affiliations

Authors

Contributions

These authors contributed equally to work.

Corresponding author

Correspondence to J.F. Bengoa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengoa, J., Campisi, S., Gervasini, A. et al. Mössbauer spectroscopy as a tool to predict the catalytic activity of the Fe3+ sites in an exchanged Fe/hydroxyapatite system. J Nanopart Res 25, 100 (2023). https://doi.org/10.1007/s11051-023-05747-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05747-w

Keywords

Navigation