Skip to main content
Log in

Design of a high-sensitivity graphene-silicon hybrid micro-disk in a square cavity whispering gallery mode biosensor

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Whispering gallery mode (WGM)–based sensors offer high sensitivity, good linearity, and wide measurement range and hence are promising for the field of biosensors. In this paper, a novel Si-graphene-integrated micro-disk biosensor is presented with increased Q-factor and sensitivity. The structure is composed of a Si micro-disk on top of six graphene layers. This composite structure is placed inside a square cavity which is etched in Su-8 substrate. It is shown that graphene reduces the bandwidth and FWHM of the biosensor which can be attributed to the high absorption due to optical transitions in graphene. On the other hand, the square cavity increases the surface area of the resonator thus reducing the electric field losses of the structure. The structure is numerically simulated by FDTD method and optimized for highest sensitivity and Q-factor. It is shown that in the proposed structure, two WGM modes are present. The sensitivity for the first and second modes are as high as 355.5 nm/RIU and 326 nm/RIU, respectively and the figure of merit (FOM) is equal to 640.5 RIU−1 for the first mode and 480.8 RIU−1 for the second mode. This biosensor can be used to detect pathogens such as cancer cells, glucose, influenza, and corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author upon responsible request.

References

  1. Cai L et al (2020) Whispering gallery mode optical microresonators: structures and sensing applications. Phys Status Solidi 217(6):1900825

    Article  CAS  Google Scholar 

  2. Chiasera A et al (2010) Spherical whispering-gallery-mode microresonators. Laser Photonics Rev 4(3):457–482

    Article  CAS  Google Scholar 

  3. Pöllinger M et al (2009) Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys Rev Lett 103(5):053901

    Article  Google Scholar 

  4. Sadagopan T, Choi SJ, Choi SJ, Dapkus PD, Bond A (2004) High-speed, low-voltage modulation in circular WGM microresonators. In: Digest of the LEOS Summer Topical Meetings Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities. IEEE, San Diego, p 2. https://doi.org/10.1109/LEOSST.2004.1338728

  5. Luo R et al (2017) Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt Lett 42(7):1281–1284

    Article  CAS  Google Scholar 

  6. Socorro AB et al (2015) Temperature sensor based on a hybrid ITO-silica resonant cavity. Opt Express 23(3):1930–1937

    Article  CAS  Google Scholar 

  7. Zhao X et al (2012) A nano-opto-mechanical pressure sensor via ring resonator. Opt Express 20(8):8535–8542

    Article  CAS  Google Scholar 

  8. Sedlmeir F et al (2014) High-Q MgF 2 whispering gallery mode resonators for refractometric sensing in aqueous environment. Opt Express 22(25):30934–30942

    Article  CAS  Google Scholar 

  9. Hanumegowda NM et al (2005) Refractometric sensors based on microsphere resonators. Appl Phys Lett 87(20):201107

    Article  Google Scholar 

  10. Shopova S et al (2011) Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl Phys Lett 98(24):243104

    Article  Google Scholar 

  11. Ajad AK et al (2021) Highly sensitive bio sensor based on WGM ring resonator for hemoglobin detection in blood samples. Optik 226:166009

    Article  CAS  Google Scholar 

  12. Righini GC, Soria S (2016) Biosensing by WGM microspherical resonators. Sensors 16(6):905

    Article  Google Scholar 

  13. Wright O (2012) Gallery of whispers. Phys World 25(02):31

    Article  Google Scholar 

  14. Teraoka I, Arnold S, Vollmer F (2003) Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium. JOSA B 20(9):1937–1946

    Article  CAS  Google Scholar 

  15. Vollmer F (2005) Taking detection to the limit. BIF Futura 20:239–244

  16. Himmelhaus M, Krishnamoorthy S, Francois A (2010) Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions. Sensors 10(6):6257–6274

    Article  CAS  Google Scholar 

  17. Bahador H, Heidarzadeh H (2020) Analysis and simulation of a novel localized surface plasmonic highly sensitive refractive index sensor. Plasmonics 15(5):1273–1279

    Article  Google Scholar 

  18. Swindal JC et al (1993) Precession of morphology-dependent resonances in nonspherical droplets. Opt Lett 18(3):191–193

    Article  CAS  Google Scholar 

  19. Weiss D et al (1995) Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt Lett 20(18):1835–1837

    Article  CAS  Google Scholar 

  20. Zhang P et al (2019) Numerical analysis of simultaneous measurement of the refractive index and the pressure utilizing the mode splitting in a single-opening microring resonator. Opt Commun 434:167–174

    Article  CAS  Google Scholar 

  21. Aghaei F, Bahador H (2022) High sensitivity metal-insulator-metal sensor based on ring-hexagonal resonator with a couple of square cavities connected. Phys Scr 97(6):065508

  22. Zhang Y-N et al (2018) Optical bio-chemical sensors based on whispering gallery mode resonators. Nanoscale 10(29):13832–13856

    Article  CAS  Google Scholar 

  23. Shopova S, Blackledge C, Rosenberger A (2008) Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface. Appl Phys B 93(1):183–187

    Article  CAS  Google Scholar 

  24. Bog U et al (2014) Large-Scale Parallel Surface Functionalization of Goblet-type Whispering Gallery Mode Microcavity Arrays for Biosensing Applications. Small 10(19):3863–3868

    Article  CAS  Google Scholar 

  25. Nasir MNM et al (2014) High-Q plasmonic bottle microresonator. In: Processding of SPIE. 8960 (Laser Resonators, Microresonators, and Beam Control XVI), p 89600M/1-89600M/8

  26. Toren P, Ozgur E, Bayindir M (2015) Real-time and selective detection of single nucleotide DNA mutations using surface engineered microtoroids. Anal Chem 87(21):10920–10926

    Article  CAS  Google Scholar 

  27. Zhang P et al (2020) FDTD simulation: simultaneous measurement of the refractive index and the pressure using microdisk resonator with two whispering-gallery modes. Sensors 20(14):3955

    Article  Google Scholar 

  28. Verma R, Gupta BD, Jha R (2011) Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens Actuators B Chem 160(1):623–631

    Article  CAS  Google Scholar 

  29. Shishir R, Ferry D (2009) Intrinsic mobility in graphene. J Phys Condens Matter 21(23):232204

    Article  CAS  Google Scholar 

  30. Kuzmenko AB et al (2008) Universal optical conductance of graphite. Phys Rev Lett 100(11):117401

    Article  CAS  Google Scholar 

  31. Gholizadeh E, Jafari B, Golmohammadi S, Soofi H (2022) Low insertion loss and high modulation depth Tunable modulator at Telecommunications Band enable by graphene/hBN multilayer gratings. In: 2022 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC). IEEE, Tabriz, pp 1–6. https://doi.org/10.1109/WASOWC54657.2022.9798421

  32. Jafari B et al (2022) Active Graphene Plasmonic Tweezers: Size Based Nanoparticle Trapping and Sorting. IEEE Trans Nanotechnol 21:219–226

    Article  CAS  Google Scholar 

  33. Jafari B, Soofi H, Abbasian K (2020) Low voltage, high modulation depth graphene THz modulator employing Fabry-Perot resonance in a metal/dielectric/graphene sandwich structure. Optics Communications 472:125911

    Article  CAS  Google Scholar 

  34. Boyd RW, Heebner JE (2001) Sensitive disk resonator photonic biosensor. Appl Opt 40(31):5742–5747

    Article  CAS  Google Scholar 

  35. Aghaei F, Bahador H, Golmohammadi S (2022) Design of a Novel THz Metamaterial Based on Combination of Different Split-Ring Resonators. In: 2022 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC). IEEE, Tabriz, pp 1–4. https://doi.org/10.1109/WASOWC54657.2022.9798417

  36. Ou X et al (2022) Microring resonator based on polarization multiplexing for simultaneous sensing of refractive index and temperature on silicon platform. Opt Express 30(14):25627–25637

    Article  CAS  Google Scholar 

  37. Vollmer F, Yang L (2012) Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1(3–4):267–291

    Article  CAS  Google Scholar 

  38. Ma T et al (2017) Simultaneous measurement of the refractive index and temperature based on microdisk resonator with two whispering-gallery modes. IEEE Photonics J 9(1):1–13

    Article  Google Scholar 

  39. Liu P, Shi Y (2016) Simultaneous measurement of refractive index and temperature using a dual polarization ring. Appl Opt 55(13):3537–3541

    Article  CAS  Google Scholar 

  40. Ma T et al (2018) Microdisk resonator with negative thermal optical coefficient polymer for refractive index sensing with thermal stability. IEEE Photonics J 10(2):1–12

    Google Scholar 

  41. Ni X et al (2016) A hybrid Mach-Zehnder interferometer for refractive index and temperature measurement. IEEE Photonics Technol Lett 28(17):1850–1853

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by F. Aghaei, S. Golmohammadi, H. Bahador, and H. Soofi. The first draft of the manuscript was written by F. Aghaei, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Golmohammadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: “Nanoarchitectonics for Functional Particles and Materials”

Guest Editor: Katsuhiko Ariga

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaei, F., Golmohammadi, S., Bahador, H. et al. Design of a high-sensitivity graphene-silicon hybrid micro-disk in a square cavity whispering gallery mode biosensor. J Nanopart Res 25, 76 (2023). https://doi.org/10.1007/s11051-023-05724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05724-3

Keywords

Navigation