Skip to main content
Log in

Deep ultraviolet detectors based on wide bandgap semiconductors: a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Deep ultraviolet (DUV) light is easily absorbed by the ozone layer. There is no interference from DUV light at ground and low altitude. Therefore, DUV detection has high applications in criminal investigation, the security monitoring of power grid, and forest fire alarm. Wide bandgap semiconductors are more suitable for nanodevices with high frequency and high reaction rate, which have wide bandgap, high electron saturation mobility, high thermal conductivity, and high breakdown strength. In this paper, the nanostructures, self-powered technologies, flexible substrates, electrical characteristics, and simulation optimization of wide bandgap semiconductors are thoroughly summarized with recent studies. The working principle, application, optimization, and technical difficulties of DUV detectors are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Austin E, Geisler AN, Nguyen J, Kohli I, Jagdeo J (2021) Visible light part I: properties and cutaneous effects of visible light. Jam Acad Dermatol 84:1219–1231. https://doi.org/10.1016/j.jaad.2021.02.048

  2. Geisler AN, Austin E, Nguyen J (2021) Visible light Part II. Photoprotection against. visible and ultraviolet light. J Am Acad Dermatol 84:1233–1244. https://doi.org/10.1016/j.jaad.2020.11.074

    Article  CAS  Google Scholar 

  3. Frederick JE, Snell HE, Haywood EK (1989) Solar ultraviolet radiation at the earth’s surface. Photochem. Photobiol 50:443–450. https://doi.org/10.1111/j.1751-1097.1989.tb05548.x

    Article  CAS  Google Scholar 

  4. Pathak PH, Feng XT, Hu PF (2015) Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun Surv Tutor 17:2047–2077. https://doi.org/10.1109/COMST.2015.2476474

    Article  Google Scholar 

  5. Gasparro FP, Mark M, Nash JF (1998) A review of sunscreen safety and efficacy. Photochem Photobiol 68:243–256. https://doi.org/10.1111/j.1751-1097.1998.tb09677.x

    Article  CAS  Google Scholar 

  6. Solomon SC, Woods TN, Didkovsky LV, Emmert JT (2010) Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum. Geophys Res Lett 37:L16103. https://doi.org/10.1029/2010GL044468

    Article  CAS  Google Scholar 

  7. Chamberlin PC, Woods TN, Crotser DA, Eparvier FG (2009) Solar cycle minimum measurements of the solar extreme ultraviolet spectral irradiance on 14 April 2008. Geophys Res Lett 36:L05102. https://doi.org/10.1029/2008GL037145

    Article  CAS  Google Scholar 

  8. Shaw GA, Siegel AM, Model J, Nischan M (2004) Field testing and evaluation of a solar-blind UV communication link for unattended ground sensors. Proceedings of SPIE 5417:250–261. https://doi.org/10.1117/12.543152

    Article  Google Scholar 

  9. Caputo D, Cesare GD, Irrera F, Palma F (1996) Solarblind UV photodetectors for large area applications. IEEE Trans Electron Devices 43:1351–1356. https://doi.org/10.1109/16.535318

    Article  CAS  Google Scholar 

  10. Razeghi M, Rogalski A (1996) Semiconductor ultraviolet detectors. J Appl Phys 79:7433–7473. https://doi.org/10.1117/12.237695

    Article  CAS  Google Scholar 

  11. Mazzeo G, Salvatori S, Ralchenko V, Conte G (2005) Design and test of deep-UV position sensitive detectors. IEEE:1554–1557. https://doi.org/10.1109/ICSENS.2004.1426486

  12. Qian F, Schnupp R, Chen CQ, Helbig R, Ryssel H (2000) Indirect-coupling ultraviolet-sensitive photodetector with high electrical gain, fast response, and low noise. Sens Actuator A Phys 86:66–72. https://doi.org/10.1016/S0924-4247(00)00444-1

    Article  CAS  Google Scholar 

  13. Zhong F, Huang CH, Danylyuk YV, Auner GW (2000) Development of an AlN deep-UV detector for space application. Mat Res Soc Symp Proc 639:G6.33.1–G6.33.5. https://doi.org/10.1557/PROC-639-g6.33

    Article  Google Scholar 

  14. Khan S, Newport D, Calve SL (2021) A sensitive and portable deep-UV absorbance detector with a microliter gas cell compatible with Micro GC. Chemosensors 9:1–16. https://doi.org/10.3390/chemosensors9040063

    Article  CAS  Google Scholar 

  15. Khan S, Newport D, Calve S (2020) Low-volume peek gas cell for BTEX detection using portable deep-UV absorption spectrophotometry. Spectrochim Acta A 243:118727. https://doi.org/10.1016/j.saa.2020.118727

    Article  CAS  Google Scholar 

  16. Yan L, Nesterenko PN, Roger S (2018) High sensitivity deep-UV LED-based z-cell photometric detector for capillary liquid chromatography. Anal Chim Acta 1032:197–202. https://doi.org/10.1016/j.aca.2018.06.00

    Article  Google Scholar 

  17. Khan S, Newport D, Calve SL (2019) Gas detection using portable deep-UV absorption spectrophotometry: A Review. Sensors 19(52):10. https://doi.org/10.3390/s19235210

    Article  CAS  Google Scholar 

  18. Whitfield MD, Lansley SP, Gaudin O, McKeag RD (2001) High-speed diamond. photoconductors: a solution for high rep-rate deep-UV laser applications. Diam Relat Mater 10:650–656. https://doi.org/10.1016/S0925-9635(00)00532-X

    Article  CAS  Google Scholar 

  19. Xu J, Zheng W, Huang F (2019) Gallium oxide solar blind ultraviolet photodetectors: a review. J Mater Chem C 7:8753–8770. https://doi.org/10.1039/C9TC02055A

    Article  CAS  Google Scholar 

  20. Alaie Z, Nejad SM, Yousefi MH (2015) Recent advances in ultraviolet photodetectors. Mat Sci Semicon Proc 29:16–55. https://doi.org/10.1016/j.mssp.2014.02.054

    Article  CAS  Google Scholar 

  21. Velazquez R, Aldalbahi A, Rivera M, Feng P (2016) Fabrications and application of single crystalline GaN for high-performance deep UV photodetectors. Aip Adv 6:1–12. https://doi.org/10.1063/1.4961878

    Article  CAS  Google Scholar 

  22. Li SY, Zhang Y, Yang W, Fang XS (2020) 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv Mater 32:1905443. https://doi.org/10.1002/adma.201905443

    Article  CAS  Google Scholar 

  23. Qu YY, Wu ZP, Ai M, Tang WH (2016) Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes. J Alloy Compd 680:247–251. https://doi.org/10.1016/j.jallcom.2016.04.134

    Article  CAS  Google Scholar 

  24. Zhang ZJ, Zhu YM, Wang WL, Huang F (2018) Growth, characterization and optoelectronic applications of pure phase large-area CsPb2Br5 flake single crystals. J Mater Chem C 6:403–670. https://doi.org/10.1039/C7TC04834C

    Article  Google Scholar 

  25. Kong WY, Wu GA, Wang KY, Luo LB (2016) Graphene-β-Ga2O3 heterojunction for highly sensitive deep ultraviolet photodetector application. Adv Mater 28:10725–10731. https://doi.org/10.1002/adma.201604049

    Article  CAS  Google Scholar 

  26. Peng XL, Wang WH, Zeng YY, Zeng YJ (2018) Enhanced photoresponse of a high-performance selfpowered UV photodetector based on ZnO nanorods and a novel electrolyte by the piezo-phototronic effect. RSC Adv 8:33174–33179. https://doi.org/10.1039/c8ra05909h

    Article  CAS  Google Scholar 

  27. Zheng W, Lin RC, Zhu YM, Zhang ZJ (2018) Vacuum ultraviolet photodetection in two-dimensional oxides. ACS Appl Mater Inter 10:20696–20702. https://doi.org/10.1021/acsami.8b04866

    Article  CAS  Google Scholar 

  28. Lu YJ, Lin CN, Shan CX (2018) Optoelectronic diamond:growth, properties, and. photodetection applications. Adv Opt Mater 6:1800359.1–1800359.16. https://doi.org/10.1002/adom.201800359

    Article  CAS  Google Scholar 

  29. Dong M, Zheng W, Xu CH, Feng H (2019) Ultrawide-bandgap amorphous MgGaO: nonequilibrium growth and vacuum ultraviolet application. Adv Opt Mater 7:1801272.1–1801272.8. https://doi.org/10.1002/adom.201801272

    Article  CAS  Google Scholar 

  30. Ho WJ, Lee YY, Su SY (2014) External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles. Nanoscale Res Lett 9:483. https://doi.org/10.1186/1556-276X-9-483

    Article  CAS  Google Scholar 

  31. Liu SB, Chang SJ, Chang SP, Chen HC (2020) An amorphous (Al0.12Ga0.88)2O3. IEEE Photon J 12:6801908. https://doi.org/10.1109/JPHOT.2020.3001582

    Article  CAS  Google Scholar 

  32. Ai ML, Guo DY, Qu YY, Cui W, Tang WH (2017) Fast response solar-blind ultraviolet photodetector with a graphene/β-Ga2O3/graphene hybrid structure. J Alloys Compd 692:634–638. https://doi.org/10.1016/j.jallcom.2016.09.087

    Article  CAS  Google Scholar 

  33. Zheng W, Zhang ZJ, Lin RC, Xu K, Huang F (2016) High crystalline 2D layered PbI2 with ultrasmooth surface:liquid-phase synthesis and application of high-speed photon detection. Adv Electron Mater 2:1600291–1600298. https://doi.org/10.1002/AELM.201600291

    Article  Google Scholar 

  34. Li YQ, Zhong WB, Zheng W, Huang F (2020) Silicon nitride deep ultraviolet photoconductive detector. IEEE Electr Device L 41:1316–1319. https://doi.org/10.1109/LED.2020.3009009

    Article  CAS  Google Scholar 

  35. Veeralingam S, Yadav P, Badhulika S (2020) An Fedoped ZnO/BiVO4 heterostructure-based large area, flexible, high-performance broadband photodetector with an ultrahigh quantum yield. Nanoscale 12:9152–9161. https://doi.org/10.1039/C9NR10776B

    Article  CAS  Google Scholar 

  36. Huang ZD, Wen YW, Chang SJ, Wu SL (2013) Ga2O3/AlGaN/GaN heterostructure ultraviolet three-band photodetector. IEEE Sens J 13:3462–3467. https://doi.org/10.1109/JSEN.2013.2264457

    Article  CAS  Google Scholar 

  37. Jia L, Zheng W, Lin RC, Huang F (2020) Ultra-high photovoltage (2.45 V) forming in graphene heterojunction via quasi-fermi level splitting enhanced effect. iScience 23:100818. https://doi.org/10.1016/j.isci.2020.100818

    Article  CAS  Google Scholar 

  38. Li PG, Shi HZ, Chen K, Guo DY, Cui W, Tang WH (2017) Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector. J Mater Chem C 5:10562–10570. https://doi.org/10.1039/C7TC03746E

    Article  CAS  Google Scholar 

  39. Sharma V, Kagdada HL, Jha PK, Kurzydlowski KJ (2020) Thermal transport properties of boron nitride based materials: a review. Renew Sust Energ Rev 120:109622. https://doi.org/10.1016/j.rser.2019.109622

    Article  CAS  Google Scholar 

  40. Zhang BJ, Yang L (2014) A review of GaN-based optoelectronic devices on silicon. substrate. Chinese Sci Bull 59:1251–1275. https://doi.org/10.1007/s11434-014-0169-x

    Article  CAS  Google Scholar 

  41. Liu H, Meng JH, Zhang XW, Chen YN (2018) High-performance deep ultraviolet photodetectors based on few layer hexagonal boron nitride. Nanoscale 10:5559–5565. https://doi.org/10.1039/C7NR09438H

    Article  CAS  Google Scholar 

  42. Li MQ, Yang N, Wang GG (2019) Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application. Appl Surf Sci 471:694–702. https://doi.org/10.1016/j.apsusc.2018.12.045

    Article  CAS  Google Scholar 

  43. Zhang Y, Chen HX, Duan L, Fan JB (2021) The electronic structures, elastic constants, dielectric permittivity, phonon spectra, thermal properties and optical response of monolayer zirconium dioxide: a first-principles study. Thin Solid Films 721:138549.1–138549.7. https://doi.org/10.1016/j.tsf.2021.138549

    Article  CAS  Google Scholar 

  44. Lu XF, Wu RL, Jing Q, Chen ZH (2018) Non-centrosymmetric BaNaP3O9 with a short deep-ultraviolet cutoff edge. J Alloy Compd 764:170–176. https://doi.org/10.1016/j.jallcom.2018.06.066

    Article  CAS  Google Scholar 

  45. Guo Y, Ma L, Mao K, Zeng XC (2019) Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility. Nanoscale Horizons 4:592–600. https://doi.org/10.1039/C8NH00273H

    Article  CAS  Google Scholar 

  46. Samah AQ, Rai DP, Ahmed R (2020) First-principles investigation of structural, elastic, thermodynamic, electronic and optical properties of lead-free double perovskites halides: Cs2LiYX6 (X=Br,I). Mater Chem Phys 285:123945. https://doi.org/10.1016/j.matchemphys.2020.123945

    Article  CAS  Google Scholar 

  47. Choi M, Son J (2017) Doping-induced bandgap tuning of α-Ga2O3 for ultraviolet lighting. Curr Appl Phys 17:713–716. https://doi.org/10.1016/j.cap.2017.02.019

    Article  Google Scholar 

  48. Zhang LY, Yan JL, Zhang Y (2012) A comparison of electronic structure and optical properties between N-doped β-Ga2O3 and N–Zn co-doped β-Ga2O3. Physica B Condensed Matter 407:1227–1231. https://doi.org/10.1016/j.physb.2012.01.107

    Article  CAS  Google Scholar 

  49. Zhang HJ, Xu CC, Li K (2020) Be3BN3 monolayer with ultrawide band gap and promising stability for deep ultraviolet applications. Comp Mater Sci 177:109552. https://doi.org/10.1016/j.commatsci.2020.109552

    Article  CAS  Google Scholar 

  50. Maity A, Grenadier SJ, Li J (2020) Hexagonal boron nitride: Epitaxial growth and device applications. Prog Quantum Electron 76:100302. https://doi.org/10.1016/j.pquantelec.2020.100302

    Article  Google Scholar 

  51. Kaushik S, Sorifi S, Singh R (2021) Study of temperature dependent behavior of h-BN. nanoflakes based deep UV photodetector. Photonic Nanostruct 43:100887. https://doi.org/10.1016/j.photonics.2020.100887

    Article  Google Scholar 

  52. Zou RJ, Zhang ZY, Liu Q, Hu JQ (2014) High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga2O3 nanobelts. Small 10:1848–1856. https://doi.org/10.1002/smll.201302705

    Article  CAS  Google Scholar 

  53. Wang QL, Chen J, Huang P, Lu YM (2019) Influence of growth temperature on the characteristics of β-Ga2O3 epitaxial films and related solar-blind photodetectors. Appl Surf Sci 489:101–109. https://doi.org/10.1016/j.apsusc.2019.05.328

    Article  CAS  Google Scholar 

  54. Monroy M, Murillo-Borjas BL, Quevedo-Lopez MA (2020) Nanocrystalline and polycrystalline β-Ga2O3 thin films for deep ultraviolet detectors. ACS Appl Electron Mater 2:3358–3365. https://doi.org/10.1021/acsaelm.0c00643

    Article  CAS  Google Scholar 

  55. Lee JW, Moon KJ, Ham MH (2008) Dielectrophoretic assembly of GaN nanowires for UV sensor applications. Solid State Commun 148:194–198. https://doi.org/10.1016/j.ssc.2008.08.022

    Article  CAS  Google Scholar 

  56. Wang XF, Zhang Y, Chen XM, He M (2014) Ultrafast, superhigh gain visible-blind UV detector and optical logic gates based on nonpolar a-axial GaN nanowire. Nanoscale 6:12009–12017. https://doi.org/10.1039/c4nr03581j

    Article  CAS  Google Scholar 

  57. Zhao B, Wang F, Chen HY, Wang YP (2015) Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire. Nano Lett 15:3988–3993. https://doi.org/10.1021/acs.nanolett.5b00906

    Article  CAS  Google Scholar 

  58. Dai J, Xu CX, Xu XY, Guo JY (2013) Single ZnO microrod ultraviolet photodetector with high photocurrent gain. ACS Appl Mater Inter 5:9344–9348. https://doi.org/10.1021/am403609y

    Article  CAS  Google Scholar 

  59. Tsai SH, Shen YC, Huang CY (2019) Deep-ultraviolet Schottky photodetectors with high deep-ultraviolet/visible rejection based on a ZnGa2O4 thin film. Appl Surf Sci 496:143670. https://doi.org/10.1016/j.apsusc.2019.143670

    Article  CAS  Google Scholar 

  60. Fei ZY, Chen ZM, Chen WQ, Chen SJ (2022) ε-Ga2O3 thin films grown by metal-organic chemical vapor deposition and its application as solar-blind photodetectors. J Alloys Compd 925:166632. https://doi.org/10.1016/j.jallcom.2022.166632

    Article  CAS  Google Scholar 

  61. Wu C, Wu FM, Hu HZ, Wan SL (2022) Review of self-powered solar-blind photodetectors based on Ga2O3. Materials Today Phys 28:100883. https://doi.org/10.1016/j.mtphys.2022.100883

    Article  CAS  Google Scholar 

  62. Qi XH, Yue JY, Ji XQ, Liu Z, Li S (2022) A deep-ultraviolet photodetector of a β-Ga2O3/CuBiI4 heterojunction highlighting ultra-high sensitivity and responsivity. Thin Solid Films 757:139397. https://doi.org/10.1016/j.tsf.2022.139397

    Article  CAS  Google Scholar 

  63. Hu Q, Zheng W, Lin R (2019) Oxides/graphene heterostructure for deep-ultraviolet photovoltaic photodetector. Carbon 147:427–433. https://doi.org/10.1016/j.carbon.2019.03.027

    Article  CAS  Google Scholar 

  64. Zhou AF, Aldalbahi A, Feng P (2016) Vertical metal-semi-conductor-metal deep UV photodetectors based on hexagonal boron nitride nanosheets prepared by laser plasma deposition. Opt Mater Express 6(10):3286–3293. https://doi.org/10.1364/OME.6.003286

    Article  CAS  Google Scholar 

  65. Li YQ, Zhang D, Lin R, Zhang ZJ, Huang F (2018) Graphene interdigital electrodes for improving sensitivity in a Ga2O3: Zn deep-ultraviolet photoconductive detector. ACS Appl Mater Interfaces 11:1013–1020. https://doi.org/10.1021/acsami.8b14380

    Article  CAS  Google Scholar 

  66. Aldalbahi A, Feng P (2015) Development of 2-D boron nitride nanosheets UV photoconductive detectors. IEEE T Electron Dev 62:1885–1890. https://doi.org/10.1109/TED.2015.2423253

    Article  CAS  Google Scholar 

  67. Shiue RJ, Gao Y, Wang Y, Peng C, Robertson AD (2015) High-responsivity graphene−boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett 15:7288–7293. https://doi.org/10.1021/acs.nanolett.5b02368

    Article  CAS  Google Scholar 

  68. Skeath P, Lindau I, Chye PW, Su CY (1979) Investigation of the mechanism for Schottky barrier formation by group III metals on GaAs (110). J Vac Sci Techno 16:1143–1148. https://doi.org/10.1116/1.570178

    Article  CAS  Google Scholar 

  69. Li C, Bando Y, Liao MY, Koide Y (2010) Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Appl Phys Lett 97:161102.1–161103.3. https://doi.org/10.1063/1.3491212

    Article  CAS  Google Scholar 

  70. Qian LX, Wu ZH, Zhang YY, Li YR (2017) Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide. ACS Photonics 4:2203–2211. https://doi.org/10.1021/acsphotonics.7b00359

    Article  CAS  Google Scholar 

  71. Cheng BC, Xu J, Ouyang ZY, Su XH, Xiao YH (2014) Individual ohmic contacted ZnO/Zn2SnO4 radial hetero structured nanowires as photodetectors with a broad-spectral-response: injection of electrons into/from interface states. J Mater Chem C 2:1808–1814. https://doi.org/10.1039/c3tc32059f

    Article  CAS  Google Scholar 

  72. Li L, Cui M, Shao H, Ye JC (2020) Investigation on the reflective MoOx/Al p-contact layer for AlGaN-based DUV-LEDs. OPT LETT 45:2427–2430. https://doi.org/10.1364/OL.387275

    Article  CAS  Google Scholar 

  73. Jy A, Zn B, Ld A, RJ A (2019) Influence of annealing temperature on structure and photoelectrical performance of β-Ga2O3 /4H-SiC heterojunction photodetectors. J Alloy Compd 798:458-466. https://doi.org/10.1016/j.jallcom.2019.05.263

  74. Yan H, Li Y, Qin J, Xu C (2021) Lowering the contact barriers of 2D Organic F16CuPc field effect transistors by introducing Van der Waals contacts. Small 17:2007739.1-2007739. https://doi.org/10.1002/smll.202007739

    Article  CAS  Google Scholar 

  75. Wu H, Yan Z, Xie Z (2021) WSe2/Pd Schottky diode combining van der Waals integrated and evaporated metal contacts. Appl Phys Lett 119:213102–213102. https://doi.org/10.1063/5.0064550

    Article  CAS  Google Scholar 

  76. Shin HG, Yoon HS, Kim JS (2018) Vertical and in-plane current devices using NbS2 /n-MoS2 van der Waals Schottky junction and graphene contact. Nano Letters 18:1937–1945. https://doi.org/10.1021/acs.nanolett.7b05338

    Article  CAS  Google Scholar 

  77. Oh S, Kim CK, Kim J (2018) High responsivity β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with ultraviolet transparent graphene electrodes. ACS Photonics 5:1123–1128. https://doi.org/10.1021/acsphotonics.7b01486

    Article  CAS  Google Scholar 

  78. Qiao H, Huang ZY, Ren XH, Zhang H (2020) Self-powered photodetectors based on 2D materials. Adv Opt Mater 8:1900765. https://doi.org/10.1002/adom.201900765

    Article  CAS  Google Scholar 

  79. Ma JL, Xia XC, Yan S, Shi ZF (2021) Stable and self-powered solar-blind ultraviolet. Photodetectors based on a Cs3Cu2I5/β-Ga2O3 heterojunction prepared by dual-source vapor codeposition. ACS Appl Mater Inter 13:15409–15419. https://doi.org/10.1021/acsami.1c00387

    Article  CAS  Google Scholar 

  80. Yan ZY, Li S, Liu Z, Tang WH (2020) High sensitivity and fast response self-powered solar-blind ultraviolet photodetector with a β-Ga2O3/spiro-MeOTAD p–n heterojunction. J Mater Chem C 8:4502–4509. https://doi.org/10.1039/C9TC06767A

    Article  CAS  Google Scholar 

  81. Wang HB, Chen HY, Li L, Fang XS (2019) High responsivity and high rejection ratio self-powered solar-blind ultraviolet photodetector based on PEDOT: PSS/β-Ga2O3 organic/inorganic p-n junction. J Phys Chem Lett 10:6850–6856. https://doi.org/10.1021/acs.jpclett.9b02793

    Article  CAS  Google Scholar 

  82. Veeralingam S, Durai L, Yadav P, Badhulika S (2021) Record-high responsivity and detectivity of a flexible deep-ultraviolet photodetector based on solid state-assisted synthesized hBN nanosheets. ACS Appl Electron Mater 3:1162–1169. https://doi.org/10.1021/acsaelm.0c01021

    Article  CAS  Google Scholar 

  83. Li D, Hao SM, Xing GJ, Yang SH (2019) Solution grown single-unit-cell quantum wires affording self-powered solar-blind UV Photodetectors with ultrahigh selectivity and sensitivity. J Am Chem Soc 141:3480–3488. https://doi.org/10.1021/jacs.8b10791

    Article  CAS  Google Scholar 

  84. Han S, Zhang HJ, Lu YM, Zhu DL (2020) Self-powered Au/MgZnO/nanolayered Ga-doped ZnO in MIS UV detector with high internal gain at deep UV light under low voltage. ACS Appl Nano Mater 3:120–130. https://doi.org/10.1021/acsanm.9b01805

    Article  CAS  Google Scholar 

  85. Chen HY, Yu PP, Zhang ZZ, Fang XS (2016) Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/ MgZnO bilayer. Small 12:5809–5816. https://doi.org/10.1002/smll.201601913

    Article  CAS  Google Scholar 

  86. Zhuo RR, Wu D, Wang YG, Wu EP (2018) A self-powered solar-blind photodetector based on a MoS2/β-Ga2O3 heterojunction. J Mater Chem C 6:10982–10986. https://doi.org/10.1039/C8TC04258F

    Article  CAS  Google Scholar 

  87. Zhao B, Wang F, Chen HY, Zheng LX, Fang XS (2017) An ultrahigh responsivity (9.7 mA W−1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 hetero- structures. Adv Funct Mater 27:1700264. https://doi.org/10.1002/adfm.201700264

  88. Guo DY, Su YL, Shi HZ, Li PG (2018) Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn:Ga2O3 pn junction. ACS Nano 12:12827–12835. https://doi.org/10.1021/acsnano.8b07997

    Article  CAS  Google Scholar 

  89. Yu PP, Hu K, Chen HY, Zheng LX, Fang XS (2017) Novel p-p heterojunctions self-powered broadband photodetectors with ultra- fast speed and high responsivity. Adv Funct Mater 27:1703166. https://doi.org/10.1002/adfm.201703166

    Article  CAS  Google Scholar 

  90. Guo DY, Liu H, Li PG, Wu ZP (2017) Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction. ACS Appl Mater Interfaces 9:1619–1628. https://doi.org/10.1021/acsami.6b13771

    Article  CAS  Google Scholar 

  91. Chan WJ, Dong HS, Choi SH (2019) Highly-flexible and stable deep-ultraviolet photodiodes made of graphene quantum dots sandwiched between graphene layers. Dyes Pigments 163:238–242. https://doi.org/10.1016/j.dyepig.2018.12.005

    Article  CAS  Google Scholar 

  92. Wang SL, Chao W, Wu FM, Guo DY (2021) Flexible, transparent and self-powered deep ultraviolet photodetector based on Ag NWs/amorphous gallium oxide Schottky junction for wearable devices. Sensor Actuat A-Phys 330:112870. https://doi.org/10.1016/j.sna.2021.112870

    Article  CAS  Google Scholar 

  93. Veeralingam S, Sahatiya P, Badhulika S (2019) First demonstration of low cost, flexible. and disposable SnSe2 based photoresponsive ammonia sensor for detection of ammonia in urine samples. Sensor Actuat B-Chem 297:126725. https://doi.org/10.1016/j.snb.2019.126725

    Article  CAS  Google Scholar 

  94. Veerla RS, Sahatiya P, Badhulika S (2017) Direct writing of ZnO pencil on paper based flexible UV photodetector and disposable photoresponsive uric acid sensor. J Mater CheM C 5:10231–10240. https://doi.org/10.1039/C7TC03292G

    Article  CAS  Google Scholar 

  95. Wang T, Liang HL, Han ZY, Mei ZX (2021) Integrated Flexible Ga2O3 deep UV photodetectors powered by environmental electromagnetic radiation energy. Adv Mater Technol 6:2000945. https://doi.org/10.1002/admt.202000945

    Article  CAS  Google Scholar 

  96. Mitra S, Aravindh A, Das G, Roqan IS (2018) High-performance solar-blind flexible deep-UV photodetectors based on quantum dots synthesized by femtosecond-laser ablation. Nano Energy 48:551–559. https://doi.org/10.1016/j.nanoen.2018.03.077

    Article  CAS  Google Scholar 

  97. Luo T, Liang B, Liu Z, Shen GZ (2015) Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Sci Bull 60:101–108. https://doi.org/10.1007/s11434-014-0687-6

    Article  CAS  Google Scholar 

  98. Meng J, Hou ZX, He CG, Xu FJ (2015) Study on AlGaN P-I-N-I-N solar-blind avalanche photodiodes with Al0.45Ga0.55N multiplication layer. Electron Mater Lett 11:1053–1058. https://doi.org/10.1007/s13391-015-5142-6

    Article  CAS  Google Scholar 

  99. Yuan H, Liu X, Afshinmanesh F, Hikita Y (2015) Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat Nanotechnol 10:707–713. https://doi.org/10.1063/1.4922531

    Article  CAS  Google Scholar 

  100. Yan Y, Xiong W, Li S, Wei Z (2019) Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection. Adv Opt Mater 7:1900622. https://doi.org/10.1002/adom.201900622

    Article  CAS  Google Scholar 

  101. Yang YS, Shun CL, Yang W, Li ZB (2018) Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J Am Chem Soc 140:4150–4156. https://doi.org/10.1021/jacs.8b01234

    Article  CAS  Google Scholar 

  102. Barkad HA, Soltani A, Mattalah M, Benbakhti B (2010) Design, fabrication and physical analysis of TiN/AlN deep UV photodiodes. J Phys D Appl Phys 43:465104–465108. https://doi.org/10.1088/0022-3727/43/46/465104

    Article  CAS  Google Scholar 

  103. Chen Q, Zhang YH, Zheng T, Li JB (2020) Polarization detection in deep-ultraviolet light with monoclinic gallium oxide nanobelts. Nanoscale Adv 2:2705–2712. https://doi.org/10.1039/D0NA00364F

    Article  CAS  Google Scholar 

Download references

Funding

1.Natural Science Foundation of Heilongjiang province, China(NO.YQ2021F012). 2.National Natural Science Foundation of China(NO.62074046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., Li, L., Gao, P. et al. Deep ultraviolet detectors based on wide bandgap semiconductors: a review. J Nanopart Res 25, 81 (2023). https://doi.org/10.1007/s11051-023-05694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05694-6

Keywords

Navigation