Skip to main content
Log in

Zero to zero nanoarchitectonics with fullerene: from molecules to nanoparticles

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoarchitectonics was proposed as a post-nanotechnology concept. The aim is to apply the knowledge gained from nanotechnology to material science, and to architect functional material systems using nano-units (atoms, molecules, nanomaterials, etc.) as building blocks. The methods of nanoarchitectonics can be applied to construct groups of functional materials with various shapes, dimensionalities, and hierarchical properties. In considering the various possibilities of nanoarchitectonics, it is important to appreciate how diverse functions can be created from simple units. For example, it is intriguing to note how fullerenes, as zero-dimensional, single-element molecular units, can build into functional material systems through nanoarchitectonics. In this review, we exemplify the concept of zero to zero nanoarchitectonics using zero-dimensional fullerenes as the building blocks and zero-dimensional nanoparticles as the products. As a related field, we present examples of the functionality of nanoparticles in general as seen in recent studies, as well as some recent studies on fullerene assemblies, in addition to fullerene nanoparticles. Then, we highlight some examples of the functionality of nanoparticles made from fullerenes. Fullerene nanoparticles are actively being used in various fields including organic solar cells, thermoelectric materials, antioxidants, and biomedical materials. Creating nanoparticles from fullerenes is a basic concept in the scheme of nanoarchitectonics, with very diverse fields of contribution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang B (2012) On typical materials acting as the dividing standard of the development stages of human substance civilization. Interdiscip Descr Complex Syst 10:114–126

    Article  Google Scholar 

  2. Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K (2017) Synthesis of a carbon nanobelt. Science 356:172–175

    Article  CAS  Google Scholar 

  3. Sun Z, Ikemoto K, Fukunaga TM, Koretsune T, Arita R, Sato S, Isobe H (2019) Finite phenine nanotubes with periodic vacancy defects. Science 363:151–155

    Article  CAS  Google Scholar 

  4. Au YK, Xie Z (2021) Recent advances in transition metal-catalyzed selective B-H functionalization of o-carboranes. Bull Chem Soc Jpn 94:879–899

    Article  CAS  Google Scholar 

  5. Datta S, Kato Y, Higashiharaguchi S, Aratsu K, Isobe A, Saito T, Prabhu DD, Kitamoto Y, Hollamby MJ, Smith AJ, Dalgliesh R, Mahmoudi N, Pesce L, Perego C, Pavan GM, Yagai S (2020) Self-assembled poly-catenanes from supramolecular toroidal building blocks. Nature 583:400–405

    Article  CAS  Google Scholar 

  6. Kato T, Gupta M, Yamaguchi D, Gan KP, Nakayama M (2021) Supramolecular association and nanostructure formation of liquid crystals and polymers for new functional materials. Bull Chem Soc Jpn 94:357–376

    Article  CAS  Google Scholar 

  7. Hashim PK, Bergueiro J, Meijer EW, Aida T (2020) Supramolecular polymerization: a Conceptual expansion for innovative materials. Prog Polym Sci 105:101250

    Article  CAS  Google Scholar 

  8. Horike S, Nagarkar SS, Ogawa T, Kitagawa S (2020) A new dimension for coordination polymers and metal–organic frameworks: towards functional glasses and liquids. Angew Chem Int Ed 59:6652–6664

    Article  CAS  Google Scholar 

  9. Hosono N (2021) Design of porous coordination materials with dynamic properties. Bull Chem Soc Jpn 94:60–69

    Article  CAS  Google Scholar 

  10. Domoto Y, Makoto Fujita M (2022) Self-assembly of nanostructures with high complexity based on metal⋯unsaturated-bond coordination. Coord Chem Rev 466:214605

    Article  CAS  Google Scholar 

  11. Chaudhary A, Yadav RD (2019) A review on virus protein self-assembly. J Nanopart Res 21:254

    Article  Google Scholar 

  12. Podder A, Lee HJ, Kim BH (2021) Fluorescent nucleic acid systems for biosensors. Bull Chem Soc Jpn 94:1010–1035

    Article  CAS  Google Scholar 

  13. Sethi S, Sugiyama H, Endo M (2022) Biomimetic DNA nanotechnology to understand and control cellular responses. ChemBioChem 23:e202100446

    Article  CAS  Google Scholar 

  14. Wu W, Shevchenko EV (2018) The surface science of nanoparticles for catalysis: electronic and steric effects of organic ligands. J Nanopart Res 20:255

    Article  Google Scholar 

  15. Bai B, Wang D, Wan L-J (2021) Synthesis of covalent organic framework films at interfaces. Bull Chem Soc Jpn 94:1090–1098

    Article  CAS  Google Scholar 

  16. Oliveira ON Jr, Caseli L, Ariga K (2022) The past and the future of Langmuir and Langmuir–Blodgett films. Chem Rev 122:6459–6513

    Article  Google Scholar 

  17. Yeap SP, Lim JK, Ooi BS, Ahmad AL (2017) Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications. J Nanopart Res 19:368

    Article  Google Scholar 

  18. Nakato T, Sirinakorn T, Ishitobi W, Mouri E, Ogawa M (2021) Cooperative electric alignment of colloidal graphene oxide particles with liquid crystalline niobate nanosheets. Bull Chem Soc Jpn 94:2871–2879

    Article  CAS  Google Scholar 

  19. Holmes A, Deniau E, Lartigau-Dagron C, Bousquet A, Chambon S, Holmes NP (2021) Review of waterborne organic semiconductor colloids for photovoltaics. ACS Nano 15:3927–3959

    Article  CAS  Google Scholar 

  20. Okamoto T, Yu CP, Mitsui C, Yamagishi M, Ishii H, Takeya J (2020) Bent-shaped p-type small-molecule organic semiconductors: a molecular design strategy for next-generation practical applications. J Am Chem Soc 142:9083–9096

    Article  CAS  Google Scholar 

  21. Chang CC, Geleta TA, Imae T (2021) Effect of carbon dots on supercapacitor performance of carbon nanohorn/conducting polymer composites. Bull Chem Soc Jpn 94:454–462

    Article  CAS  Google Scholar 

  22. Kanemitsu Y (1995) Light emission from porous silicon and related materials. Physics Reports 263:1–91

    Article  CAS  Google Scholar 

  23. Yamashita M (2021) Next generation multifunctional nano-science of advanced metal complexes with quantum effect and nonlinearity. Bull Chem Soc Jpn 94:209–264

    Article  CAS  Google Scholar 

  24. Shimomura M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 6:11–16

    Article  CAS  Google Scholar 

  25. Yamamoto HM (2021) Phase-transition devices based on organic Mott insulators. Bull Chem Soc Jpn 94:2505–2539

    Article  CAS  Google Scholar 

  26. Sepasi T, Ghadiri T, Bani F, Ebrahimi-Kalan A, Khodakarimi S, Zarebkohan A, Gorji A (2022) Nanotechnology-based approaches in diagnosis and treatment of epilepsy. J Nanopart Res 24:199

    Article  Google Scholar 

  27. Nakamura E (2017) Atomic-resolution transmission electron microscopic movies for study of organic molecules, assemblies, and reactions: the first 10 years of development. Acc Chem Res 50:1281–1292

    Article  CAS  Google Scholar 

  28. Harano K (2021) Self-assembly mechanism in nucleation processes of molecular crystalline materials. Bull Chem Soc Jpn 94:463–472

    Article  CAS  Google Scholar 

  29. Sugimoto Y, Pou P, Abe M, Jelinek P, Pérez R, Morita S, Custance Ó (2007) Chemical identification of individual surface atoms by atomic force microscopy. Nature 446:64–67

    Article  CAS  Google Scholar 

  30. Bacilla ACC, Okada Y, Yoshimoto S, Islyaikin MK, Koifman OI, Kobayashi N (2021) Triangular expanded hemiporphyrazines: electronic structures and nanoscale characterization of their adlayers on Au(111). Bull Chem Soc Jpn 94:34–43

    Article  CAS  Google Scholar 

  31. Kimura K, Miwa K, Imada H, Imai-Imada M, Kawahara S, Takeya J, Kawai M, Galperin M, Kim Y (2019) Selective triplet exciton formation in a single molecule. Nature 570:210–213

    Article  CAS  Google Scholar 

  32. Xu X, Kinikar A, Giovannantonio MD, Ruffieux P, Müllen K, Fasel R, Narita A (2021) On-surface synthesis of dibenzohexacenohexacene and dibenzopentaphenoheptaphene. Bull Chem Soc Jpn 94:997–999

    Article  CAS  Google Scholar 

  33. Zhang D, Liu D, Ubukata T, Seki T (2022) Unconventional approaches to light-promoted Dynamic surface morphing on polymer films. Bull Chem Soc Jpn 95:138–162

    Article  CAS  Google Scholar 

  34. Hosono N, Uemura T (2021) Development of functional materials via polymer encapsulation into metal­organic frameworks. Bull Chem Soc Jpn 94:2139–2148

    Article  CAS  Google Scholar 

  35. Miyasaka H (2021) Charge manipulation in metal­organic frameworks: toward designer functional molecular materials. Bull Chem Soc Jpn 94:2929–2955

    Article  CAS  Google Scholar 

  36. Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375

    Article  CAS  Google Scholar 

  37. Zhou H-CJ, Kitagawa S (2014) Metal-organic frameworks (MOFs). Chem Soc Rev 43:5415–5418

  38. Takezawa H, Fujita M (2021) Molecular confinement effects by self-assembled coordination cages. Bull Chem Soc Jpn 94:2351–2369

    Article  CAS  Google Scholar 

  39. Sawada T, Fujita M (2021) Orderly entangled nanostructures of metal­peptide strands. Bull Chem Soc Jpn 94:2342–2350

    Article  CAS  Google Scholar 

  40. Ikeda A, Shinkai S (1997) Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding. Chem Rev 97:1713–1734

    Article  CAS  Google Scholar 

  41. Ariga K, Ito H, Hill JP, Tsukube H (2012) Molecular recognition: from solution science to nano/materials technology. Chem Soc Rev 41:5800–5835

    Article  CAS  Google Scholar 

  42. Harada A, Takashima Y, Hashidzume A, Yamaguchi H (2021) Supramolecular polymers and materials formed by host-guest interactions. Bull Chem Soc Jpn 94:2381–2389

    Article  CAS  Google Scholar 

  43. Yoshizawa M, Klosterman J, Fujita M (2009) Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48:3418–3438

    Article  CAS  Google Scholar 

  44. Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha LK, Hill JP (2019) Self-assembly as a key player for materials nanoarchitectonics. Sci Technol Adv Mater 20:51–95

    Article  CAS  Google Scholar 

  45. Akutagawa T (2021) Chemical design and physical properties of dynamic molecular assemblies. Bull Chem Soc Jpn 94:1400–1420

    Article  CAS  Google Scholar 

  46. Ariga K, Yamauchi Y, Mori T, Hill JP (2013) 25th Anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv Mater 25:6477–6512

    Article  CAS  Google Scholar 

  47. Ariga K (2020) Don’t forget Langmuir–Blodgett films 2020: interfacial nanoarchitectonics with molecules, materials, and living objects. Langmuir 36:7158–7180

    Article  CAS  Google Scholar 

  48. Kubo A, Era M, Narita T, Oishi Y (2021) Fabrication of flat and smooth lead-based layered perovskite films at a transfer process of the Langmuir-Blodgett method. Bull Chem Soc Jpn 94:2695–2697

    Article  CAS  Google Scholar 

  49. Rydzek G, Ji Q, Li M, Schaaf P, Hill JP, Boulmedais F, Ariga K (2015) Electrochemical nanoarchitectonics and layer-by-layer assembly: from basics to future. Nano Today 10:138–167

    Article  CAS  Google Scholar 

  50. Akashi M, Akagi T (2021) Composite materials by building block chemistry using weak interaction. Bull Chem Soc Jpn 94:1903–1921

    Article  CAS  Google Scholar 

  51. Ariga K, Lvov Y, Decher G (2022) There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonicsbased materials and devices. Phys Chem Chem Phys 24:4097–4115

    Article  CAS  Google Scholar 

  52. Sun J-K, Xu Q (2014) Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ Sci 7:2071–2100

    Article  CAS  Google Scholar 

  53. Li L, Bai X, Shao L, Zhai X, Fan F, Li Y, Fu Y (2021) Fabrication of a MOF/aerogel composite via a mild and green one-pot method. Bull Chem Soc Jpn 94:2477–2483

    Article  CAS  Google Scholar 

  54. Pan Z-Z, Lv W, Yang Q-H, Nishihara H (2022) Aligned macroporous monoliths by ice-templating. Bull Chem Soc Jpn 95:611–620

    Article  CAS  Google Scholar 

  55. Maruo S, Fourkas J (2008) Recent progress in multiphoton microfabrication. Laser Photon Rev 2:100–111

    Article  CAS  Google Scholar 

  56. Nishikawa M, Murata T, Ishihara S, Shiba K, Shrestha LK, Yoshikawa G, Minami K, Ariga K (2021) Discrimination of methanol from ethanol in gasoline using a membrane-type surface stress sensor coated with copper(I) complex. Bull Chem Soc Jpn 94:648–654

    Article  CAS  Google Scholar 

  57. Komiyama M, Yoshimoto K, Sisido M, Ariga K (2017) Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull Chem Soc Jpn 90:967–1004

    Article  Google Scholar 

  58. Hata Y, Serizawa T (2021) Robust gels composed of self-assembled cello-oligosaccharide networks. Bull Chem Soc Jpn 94:2279–2289

    Article  CAS  Google Scholar 

  59. Feynman RP (1960) There's plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  60. Roukes M (2001) Plenty of room, indeed. Sci Am 285:48–51

    Article  CAS  Google Scholar 

  61. Ariga K (2021) Nanoarchitectonics: what’s coming next after nanotechnology? Nanoscale Horiz. 6:364–378

    Article  CAS  Google Scholar 

  62. Ariga K, Ji Q, Hill JP, Bando Y, Aono M (2012) Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Mater 4:e17

    Article  Google Scholar 

  63. Ariga K, Minami K, Ebara M, Nakanishi J (2016) What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polym J 48:371–389

    Article  CAS  Google Scholar 

  64. Ariga K, Li J, Fei J, Ji Q, Hill JP (2016) Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv Mater 28:1251–1286

    Article  CAS  Google Scholar 

  65. Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J (2020) Nanoarchitectonics beyond self-assembly: challenges to create bio-like hierarchic organization. Angew Chem Int Ed 59:15424–15446

    Article  CAS  Google Scholar 

  66. Aono M, Ariga K (2016) The way to nanoarchitectonics and the way of nanoarchitectonics. Adv Mater 28:989–992

    Article  CAS  Google Scholar 

  67. Ariga K (2017) Nanoarchitectonics: a navigator from materials to life. Mater Chem Front 1:208–211

    Article  CAS  Google Scholar 

  68. Ariga K, Yamauchi Y (2020) Nanoarchitectonics from atom to life. Chem Asian J 15:718–728

    Article  CAS  Google Scholar 

  69. Ariga K, Fakhrullin R (2022) Materials nanoarchitectonics from atom to living cell: a method for everything. Bull Chem Soc Jpn 95:774–795

    Article  CAS  Google Scholar 

  70. Laughlin RB, Pines D (2000) The theory of everything. Proc Natl Acad Sci 97:28–31

    Article  CAS  Google Scholar 

  71. Ramanathan M, Shrestha LK, Mori T, Ji Q, Hill JP, Ariga K (2013) Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. Phys Chem Chem Phys 15:10580–10611

    Article  CAS  Google Scholar 

  72. Nakanishi W, Minami K, Shrestha LK, Ji Q, Hill JP, Ariga K (2014) Bioactive nanocarbon assemblies: nanoarchitectonics and applications. 9:378–394

    CAS  Google Scholar 

  73. Tirayaphanitchkul C, Imwiset K, Ogawa M (2021) Nanoarchitectonics through organic modification of oxide based layered materials; concepts, methods and functions. Bull Chem Soc Jpn 94:678–693

    Article  CAS  Google Scholar 

  74. Gupta D, Varghese BS, Suresh M, Panwar C, Gupta TK (2022) Nanoarchitectonics: functional nanomaterials and nanostructures-a review. J Nanopart Res 24:196

    Article  Google Scholar 

  75. Ariga K, Mori T, Kitao T, Uemura T (2020) Supramolecular chiral nanoarchitectonics. Adv Mater 32:1905657

    Article  CAS  Google Scholar 

  76. Ariga K, Shionoya M (2021) Nanoarchitectonics for coordination asymmetry and related chemistry. Bull Chem Soc Jpn 94:839–859

    Article  CAS  Google Scholar 

  77. Nayak A, Unayama S, Tai S, Tsuruoka T, Waser R, Aono M, Valov I, Hasegawa T (2018) Nanoarchitectonics for controlling the number of dopant atoms in solid electrolyte nanodots. Adv Mater 30:1703261

    Article  Google Scholar 

  78. Mahdaoui D, Hirata C, Nagaoka K, Miyazawa K, Fujii K, Ando T, Matsushita Y, Abderrabba M, Ito O, Tsukagoshi K, Wakahara T (2022) Nanoarchitectonics of C70 hexagonal nanosheets: synthesis and charge transport properties. Diam Relat Mat 128:109217

    Article  CAS  Google Scholar 

  79. Shen X, Song J, Sevencan C, Leong DT, Ariga K (2022) Bio-interactive nanoarchitectonics with two-dimensional materials and environments. Sci Technol. Adv Mater 23:199–224.S

    Google Scholar 

  80. Jia Y, Yan X, Li J (2022) Schiff base mediated dipeptide assembly toward nanoarchitectonics. Angew Chem Int Ed 61:e202207752

    Article  CAS  Google Scholar 

  81. Ishihara S, Labuta J, Van Rossom W, Ishikawa D, Minami K, Hill JP, Ariga K (2014) Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Phys Chem Chem Phys 16:9713–9746

    Article  CAS  Google Scholar 

  82. Li X, Xu C, Li Y, Wu F, Zhang K, Miao Y, Sun S (2022) Sensor nanoarchitectonics with free-standing C60 super-long nanowire for sensitivity-enhanced all-optical visible light detecting. Opt Laser Technol 149:107821

    Article  CAS  Google Scholar 

  83. Ariga K, Ji Q, Mori T, Naito M, Yamauchi Y, Abe H, Hill JP (2013) Enzyme nanoarchitectonics: organization and device application. Chem Soc Rev 42:6322–6345

    Article  CAS  Google Scholar 

  84. Tsuchiya T, Nakayama T, Ariga K (2022) Nanoarchitectonics intelligence with atomic switch and neuromorphic network system. Appl Phys Express 15:100101

    Article  Google Scholar 

  85. Kumari N, Chhabra T, Kumar S, Krishnan V (2022) Nanoarchitectonics of sulfonated biochar from pine needles as catalyst for conversion of biomass derived chemicals to value added products. Catal Commun 168:106467

    Article  CAS  Google Scholar 

  86. Chen G, Singh SK, Takeyasu K, Hill JP, Nakamura J, Ariga K (2022) Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts. Sci. Technol. Adv. Mater. 23:413–423

    Article  CAS  Google Scholar 

  87. Kim J, Kim JH, Ariga K (2017) Redox-active polymers for energy storage nanoarchitectonics. Joule 1:739–768

    Article  CAS  Google Scholar 

  88. Giussi JM, Cortez ML, Marmisollé WA, Azzaroni O (2019) Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices. Chem Soc Rev 48:814–849

    Article  CAS  Google Scholar 

  89. Boukhalfa N, Darder M, Boutahala M, Aranda P, Ruiz-Hitzky E (2021) Composite nanoarchitectonics: alginate beads encapsulating sepiolite/magnetite/Prussian blue for removal of cesium Ions from water. Bull Chem Soc Jpn 94:122–132

    Article  CAS  Google Scholar 

  90. Bhadra BN, Shrestha LK, Ariga K (2022) Porous carbon nanoarchitectonics for the environment: detection and adsorption. CrystEngComm 24:6804–6824

    Article  CAS  Google Scholar 

  91. Hu W, Shi J, Lv W, Jia X, Ariga K (2022) Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. Sci Technol Adv Mater 23:393–412

    Article  CAS  Google Scholar 

  92. Yu H, Huang C, Kong X, Ma J, Ren P, Chen J, Zhang X, Luo H, Chen G (2022) Nanoarchitectonics of cartilage-targeting hydrogel microspheres with reactive oxygen species responsiveness for the repair of osteoarthritis. ACS Appl Mater Interfaces 14:40711–40723

    Article  CAS  Google Scholar 

  93. Shrestha LK, Ji Q, Mori T, Miyazawa K, Yamauchi Y, Hill JP, Ariga K (2013) Fullerene nanoarchitectonics: from zero to higher dimensions. Chem Asian J 8:1662–1679

    Article  CAS  Google Scholar 

  94. Lun-Fu AV, Bubenchikov AM, Bubenchikov MA, Ovchinnikov VA (2021) Numerical simulation of interaction between Kr+ ion and rotating C60 fullerene towards for nanoarchitectonics of fullerene materials. Crystals 11:1204

    Article  CAS  Google Scholar 

  95. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem 22:1179–1201

    Article  CAS  Google Scholar 

  96. Do TTA, Imae T (2021) Photodynamic and photothermal effects of carbon dot-coated magnetite- and porphyrin-conjugated confeito-like gold nanoparticles. Bull Chem Soc Jpn. 94:2079–2088

    Article  CAS  Google Scholar 

  97. Tada H (2022) Rational design for gold nanoparticle-based plasmonic catalysts and electrodes for water oxidation towards artificial photosynthesis. Dalton Trans 51:3383–3393

    Article  CAS  Google Scholar 

  98. Miyazaki H, Yamada K (2022) Designing of praseodymium oxide nanoparticle-based photoluminescent composite films using polyurethane matrix. Bull Chem Soc Jpn 95:1407–1410

    Article  CAS  Google Scholar 

  99. Nanba Y, Koyama M (2021) Thermodynamic stabilities of PdRuM (M = Cu, Rh, Ir, Au) alloy nanoparticles assessed by Wang-Landau sampling combined with DFT calculations and multiple regression analysis. Bull Chem Soc Jpn 94:2484–2492

    Article  CAS  Google Scholar 

  100. Tokoro H, Nakabayashi K, Nagashima S, Song Q, Yoshikiyo M, Ohkoshi S (2022) Optical properties of epsilon iron oxide nanoparticles in the millimeter- and terahertz-wave regions. Bull Chem Soc Jpn 95:538–552

    Article  CAS  Google Scholar 

  101. Miyamoto M, Hada M (2021) IR intensities of CO molecules adsorbed on atop and low-coordinate sites of Pd nanoparticles: analysis using natural perturbation orbitals. Bull Chem Soc Jpn 94:1789–1793

    Article  CAS  Google Scholar 

  102. Okada S, Nakahara Y, Watanabe M, Tamai T, Kobayashi Y, Yajima S (2021) Room-temperature coalescence of tri-n-octylphosphine-oxide-capped Cu-Ag core-shell nanoparticles: effect of sintering agent and/or reducing agent. Bull Chem Soc Jpn 94:1616–1624

    Article  CAS  Google Scholar 

  103. Ning T, Luo Y, Liu P, Lu A (2022) A novel Ag nanoparticles purification method and the conductive ink based on the purified Ag nanoparticles for printed electronics. J Nanopart Res 24:15

    Article  CAS  Google Scholar 

  104. Watanabe T, Yamamoto E, Wada H, Shimojima A, Kuroda K (2021) Preparation of colloidal monodisperse hollow organosiloxane-based nanoparticles with a double mesoporous shell. Bull Chem Soc Jpn 94:1602–1608

    Article  CAS  Google Scholar 

  105. Yamamoto E, Cheng L, Watanabe T, Mori S, Shimojima A, Wada H, Kazuyuki Kuroda K (2021) Formation of closed pores in mesoporous silica nanoparticles by hydrothermal treatment. Bull Chem Soc Jpn. 94:1625–1630

    Article  CAS  Google Scholar 

  106. Gözeten İ, Tunç M (2022) Palladium nanoparticles supported on aluminum oxide (Al2O3) for the catalytic hexavalent chromium reduction. J Nanopart Res 24:13

    Article  Google Scholar 

  107. Watanabe S, Oyaizu K (2020) Methoxy-substituted phenylenesulfide polymer with excellent dispersivity of TiO2 nanoparticles for optical application. Bull Chem Soc Jpn 93:1287–1292

    Article  CAS  Google Scholar 

  108. Zhai Y, Yang W, Xie X, Sun X, Wang J, Yang X, Naik N, Kimura H, Du W, Guo Z, Hou C (2022) Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium–oxygen batteries. Inorg Chem Front 9:1115–1124

    Article  CAS  Google Scholar 

  109. Yang C-L, Wang L-N, Yin P, Liu J, Chen M-X, Yan Q-Q, Wang Z-S, Xu S-L, Chu S-Q, Cui C, Ju H, Zhu J, Lin Y, Shui J, Liang H-W (2021) Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374:459–464

    Article  CAS  Google Scholar 

  110. Mitomo H, Ijiro K (2021) Controlled nanostructures fabricated by the self-assembly of gold nanoparticles via simple surface modifications. Bull Chem Soc Jpn 94:1300–1310

    Article  CAS  Google Scholar 

  111. Jimbo Y, Nishikado Y, Imura K (2021) Optical field and chemical environment near the surface modified gold nanoparticle assembly revealed by two-photon induced photoluminescence and surface enhanced Raman scattering. Bull Chem Soc Jpn. 94:2272–2278

    Article  CAS  Google Scholar 

  112. Hu X, Hu R, Wu X, Songsun F, Zhu H, Chen J, Chen H (2021) Self-assembled fabrication of water-soluble porphyrin mediated supramolecule-gold nanoparticle networks and their application in selective sensing. Bull Chem Soc Jpn 94:2662–2669

    Article  CAS  Google Scholar 

  113. Zeng QP, Qian Y, Huang Y, Ding F, Qi X, Shen F (2021) olydopamine nanoparticle-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact Mater 6:2647–2657

    Article  CAS  Google Scholar 

  114. Juji S, Oishi M (2022) Long-term cryopreservation of ready-to-use DNA-modified gold nanoparticle derivatives: effect of preservation temperature on their DNA dissociation and functional stability. Bull Chem Soc Jpn 95:410–412

    Article  CAS  Google Scholar 

  115. Tiburcius S, Krishnan K, Patel V, Netherton J, Sathish CI, Weidenhofer J, Yang J-H, Verrills NM, Karakoti A, Vinu A (2022) Triple surfactant assisted synthesis of novel core-shell mesoporous silica nanoparticles with high surface area for drug delivery for prostate cancer. Bull Chem Soc Jpn 95:331–340

    Article  CAS  Google Scholar 

  116. Ouyang B, Poon W, Zhang Y-N, Lin ZP, Kingston BR, Tavares AJ, Zhang Y, Chen J, Valic MS, Syed AM, MacMillan P, Couture-Senécal J, Zheng G, Chan WCW (2020) The dose threshold for nanoparticle tumour delivery. Nat. Mater. 19:1362–1371

    Article  CAS  Google Scholar 

  117. Rosenblum D, Gutkin A, Kedmi R, Ramishetti S, Veiga N, Jacobi AM, Schubert MS, Friedmann-Morvinski D, Cohen ZR, Behlke MA, Lieberman J, Peer D (2020) CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv 6:eabc9450

    Article  CAS  Google Scholar 

  118. Kratish Y, Nakamuro T, Liu Y, Li J, Tomotsuka I, Harano K, Nakamura E, Marks TJ (2021) Synthesis and characterization of a well-defined carbon nanohorn-supported molybdenum dioxo catalyst by SMART-EM imaging. Surface structure at the atomic level. Bull Chem Soc Jpn 94:427–432

    Article  Google Scholar 

  119. Shimizu T, Lungerich D, Stuckner J, Murayama M, Harano K, Nakamura E (2020) Real-time video imaging of mechanical motions of a single molecular shuttle with sub-millisecond sub-Angstrom precision. Bull Chem Soc Jpn 93:1079–1085

    Article  CAS  Google Scholar 

  120. Kawai S, Krejčí O, Nishiuchi T, Sahara K, Kodama T, Pawlak R, Meyer E, Foster AS KT (2020) Three-dimensional graphene nanoribbons as a framework for molecular assembly and local probe chemistry. Sci Adv 6:eaay8913

    Article  CAS  Google Scholar 

  121. Kawai S, Sang H, Kantorovich L, Takahashi K, Nozaki K, Ito S (2020) An endergonic synthesis of single Sondheimer-Wong diyne by local probe chemistry. Angew Chem Int Ed 59:10842–10847

    Article  CAS  Google Scholar 

  122. Maji S, Shrestha RG, Lee J, Han SA, Hill JP, Kim JH, Ariga K, Shrestha LK (2021) Macaroni fullerene crystals-derived mesoporous carbon tubes as a high rate performance supercapacitor electrode material. Bull Chem Soc Jpn 94:1502–1509

    Article  CAS  Google Scholar 

  123. Minato J, Miyazawa K (2005) Solvated structure of C60 nanowhiskers. Carbon 43:2837–2841

    Article  CAS  Google Scholar 

  124. Miyazawa K (2015) Synthesis of fullerene nanowhiskers using the liquid–liquid interfacial precipitation method and their mechanical, electrical and superconducting properties. Sci Technol Adv Mater 16:013502

    Article  Google Scholar 

  125. Song J, Jia X, Minami K, Hill JP, Nakanishi J, Shrestha LK, Ariga K (2020) Large-area aligned fullerene nanocrystal scaffolds as Culture Substrates for enhancing mesenchymal stem cell self-renewal and multipotency. ACS Appl Nano Mater 3:6497–6506

    Article  CAS  Google Scholar 

  126. Tang Q, Maji S, Jiang B, Sun S, Zhao W, Hill JP, Ariga K, Fuchs H, Ji Q, Shrestha LK (2019) Manipulating the structural transformation of fullerene microtubes to fullerene microhorns having microscopic recognition properties. ACS Nano 13:14005–14012

    Article  CAS  Google Scholar 

  127. Chen G, Bhadra BN, Sutrisno L, Shrestha LK, Ariga K (2022) Fullerene rosette: two-dimensional interactive nanoarchitectonics and selective vapor sensing. Int J Mol Sci 23:5454

    Article  CAS  Google Scholar 

  128. Song J, Murata T, Tsai K-C, Jia X, Sciortino F, Ma R, Yamauchi Y, Hill JP, Shrestha LK, Ariga K (2022) Fullerphene nanosheets: a bottom-up 2D material for single-carbon-atom-level molecular discrimination. Adv Mater Interfaces 9:2102241

    Article  CAS  Google Scholar 

  129. Hill JP, Shrestha RG, Song J, Ji Q, Ariga K, Shrestha LK (2021) Monitoring the release of silver from a supramolecular fullerene C60-AgNO3 nanomaterial. Bull Chem Soc Jpn 94:1347–1354

    Article  CAS  Google Scholar 

  130. Chen G, Sciortino F, Takeyasu K, Nakamura J, Hill JP, Shrestha LK, Ariga K (2022) Hollow spherical fullerene obtained by kinetically controlled liquid-liquid interfacial precipitation. Chem Asian J 17:e202200756

    Article  CAS  Google Scholar 

  131. Baskar AV, Ruban AM, Davidraj JM, Singh G, Al-Muhtaseb AH, Lee JM, Yi J, Vinu A (2021) Single-step synthesis of 2D mesoporous C60/carbon hybrids for supercapacitor and Li-ion battery applications. Bull. Chem. Soc. Jpn. 94:133–140

    Article  CAS  Google Scholar 

  132. Neal EA, Nakanishi T (2021) Alkyl-fullerene materials of tunable morphology and function. Bull Chem Soc Jpn 94:1769–1788

  133. Rafique S, Abdullah SM, Sulaiman K, Iwamoto M (2018) Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement. Renew. Sust. Energ. Rev. 84:43–53

    Article  Google Scholar 

  134. Gartner S, Clulow AJ, Howard IA, Gilbert EP, Burn PL, Gentle IR, Colsmann A (2017) Relating structure to efficiency in surfactant-free polymer/fullerene nanoparticle-based organic solar cells. ACS Appl Mater Interfaces 9:42986–42995

    Article  Google Scholar 

  135. Gasparini N, Wadsworth A, Moser M, Baran D, McCulloch I, Brabec CJ (2018) The physics of small molecule acceptors for efficient and stable bulk heterojunction solar cells. Adv Energy Mater 8:1703298

  136. Xie C, Tang XF, Berlinghof M, Langner S, Chen S, Spath A, Li N, Fink RH, Unruh T, Brabec CJ (2018) Robot-based high-throughput engineering of alcoholic polymer: fullerene nanoparticle inks for an eco-friendly processing of organic solar cells. ACS Appl Mater Interfaces 10:23225–23234

    Article  CAS  Google Scholar 

  137. Jouhara H, Żabnieńska-Góra A, Khordehgah N, Doraghi Q, Ahmad L, Norman L, Axcell B, Wrobel L, Dai S (2021) Thermoelectric generator (TEG) technologies and applications. Int. J. Thermofluids 9:100063

    Article  CAS  Google Scholar 

  138. Jin Y, Hwang J, Kim S, Kim J, Kim SJ (2021) Synergetic enhancement of thermoelectric performances by localized carrier and phonon scattering in Cu2Se with incorporated fullerene nanoparticles. Nanoscale Advances 3:3107–3113

    Article  CAS  Google Scholar 

  139. Szczesniak D, Przybylek P (2021) Oxidation stability of natural ester modified by means of fullerene nanoparticles. Energies 14:490

    Article  CAS  Google Scholar 

  140. Ikeda A (2013) Water-soluble fullerenes using solubilizing agents, and their applications. J Incl Phenom Macrocycl Chem 77:49–65

    Article  CAS  Google Scholar 

  141. Kovochich M, Espinasse B, Auffan M, Hotze EM, Wessel L, Xia T, Nel AE, Wiesner MR (2009) Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition. Environ Sci Technol 43:6378–6384

    Article  CAS  Google Scholar 

  142. Henry TB, Menn FM, Fleming JT, Wilgus J, Compton RN, Sayler GS (2007) Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in Larval Zebrafish by assessment of gene expression. Environ Health Perspect 115:1059–1065

    Article  CAS  Google Scholar 

  143. He A, Jiang J, Ding J, Sheng GD (2021) Blocking effect of fullerene nanoparticles (nC(60)) on the plant cell structure and its phytotoxicity. Chemosphere 278:130474

    Article  CAS  Google Scholar 

  144. Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning in materials informatics: recent applications and prospects. npj Comput Mater 3:54

    Article  Google Scholar 

  145. Agrawal A, Choudhary A (2016) Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater 4:053208

    Article  Google Scholar 

  146. Oaki Y, Igarashi Y (2021) Materials informatics for 2D materials combined with sparse modeling and chemical perspective: toward small-data-driven chemistry and materials science. Bull Chem Soc Jpn 94:2410–2422

    Article  CAS  Google Scholar 

  147. Oviedo LR, Oviedo VR, Martins MO, Fagan SB, da Silva WL (2022) Nanoarchitectonics: the role of artificial intelligence in the design and application of nanoarchitectures. J Nanopart Res 24:157

    Article  Google Scholar 

  148. Chaikittisilp W, Yamauchi Y, Ariga K (2022) Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: what will be the next paradigm shift in nanoporous materials? Adv Mater 34:2107212

    Article  CAS  Google Scholar 

Download references

Funding

This study was partially supported by Japan Society for the Promotion of Science KAKENHI (Grant Numbers JP20H00392, JP20H00316, and JP21H04685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Ariga.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: “Nanoarchitectonics for Functional Particles and Materials

Katsuhiko Ariga, Guest Editor

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Song, J., Kawakami, K. et al. Zero to zero nanoarchitectonics with fullerene: from molecules to nanoparticles. J Nanopart Res 25, 45 (2023). https://doi.org/10.1007/s11051-023-05693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05693-7

Keywords

Navigation