Skip to main content
Log in

Preparation of rod-like CuSbS2 particles by soft-template synthesis and electrochemical performance toward lithium storage

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

CuSbS2 particles could be rapidly prepared by the microwave-assisted liquid phase method. Polyethylene glycol (PEG) was used as the directing agent for morphology and structure of CuSbS2 particles. Microwave irradiation could induce Cu2+, adsorbed on PEG chain structure, to reduce as Cu+. In the further reaction, the rod-like structure of CuSbS2 was formed. The results showed that the CuSbS2 particles prepared by the PEG400 structure directing agent had a higher first discharge specific capacity (~1499.6 mAh g−1) and excellent electronic and ionic conductivity. This method provides a new idea for the morphology control of anode materials for high energy density lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beaucage PA, Susca EM, Gruner SM et al (2017) Discovering synthesis routes to hexagonally ordered mesoporous niobium nitrides using poloxamer/pluronics block copolymers. Chem Mater 29(21):8973–8977

    Article  CAS  Google Scholar 

  • Behera C, Samal R, Rout CS et al (2019) Synthesis of CuSbS2 nanoplates and CuSbS2-Cu3SbS4 nanocomposite: effect of sulfur source on different phase formation. Inorg Chem 58(22):15291–15302

    Article  CAS  Google Scholar 

  • Dufton JT, Walsh A, Panchmatia PM et al (2012) Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells. Phys Chem Chem Phys 14(20):7229–7233

    Article  CAS  Google Scholar 

  • Fan Z, Yan J, Ning G et al (2013) Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon 60:558–561

    Article  CAS  Google Scholar 

  • García RGA, Cerdán-Pasarán A, Perez EAR et al (2020) Phase pure CuSbS2 thin films by heat treatment of electrodeposited Sb2S3/Cu layers. J Solid State Electrochem 24(1):185–194

    Article  Google Scholar 

  • Ghorpade Uma V, Suryawanshi MP, Shin SW et al (2018) Unassisted visible solar water splitting with efficient photoelectrodes sensitized by quantum dots synthesized via an environmentally friendly eutectic solvent-mediated approach. J Mater Chem A 6(45):22566–22579

    Article  Google Scholar 

  • Han M, Jia J, Wang W (2017) A novel CuSbS2 hexagonal nanobricks@TiO2 nanorods heterostructure for enhanced photoelectrochemical characteristics. J Alloys Comp 705:356–362

    Article  CAS  Google Scholar 

  • Li X, Liang H, Liu X et al (2021) Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. Chem Eng J 425:130657

    Article  CAS  Google Scholar 

  • Liu H, He Y, Cao K et al (2021) Stimulating the reversibility of Sb2S3 anode for high-performance potassium-ion batteries. Small 17(10):2008133

    Article  CAS  Google Scholar 

  • Ma J, Duan X, Lian J et al (2010) Sb2S3 with various nanostructures: controllable synthesis, formation mechanism, and electrochemical performance toward lithium storage. Chemistry 16(44):13210–13217

    Article  CAS  Google Scholar 

  • Mahmoud MA, O’Neil D, El-Sayed MA (2013) Hollow and solid metallic nanoparticles in sensing and in nanocatalysis. Chem Mater 26(1):44–58

    Article  Google Scholar 

  • Malho J-M, Morits M, Löbling TI et al (2016) Rod-like nanoparticles with striped and helical topography. ACS Macro Letters 5(10):1185–1190

    Article  CAS  Google Scholar 

  • Mane GP, Talapaneni SN, Lakhi KS et al (2017) Highly ordered nitrogen-rich mesoporous carbon nitrides and their superior performance for sensing and photocatalytic hydrogen generation. Angew Chem Int Ed Engl 56(29):8481–8485

    Article  CAS  Google Scholar 

  • Manimozhi T, Archana J, Navaneethan M et al (2019) Morphology and phase controlled synthesis of PVP-assisted copper antimony sulfide microstructures using solvothermal method and their properties. Mater Sci Semiconductor Process 103:104606

    Article  CAS  Google Scholar 

  • Marino C, Block T, Pöttgen R et al (2017) CuSbS2 as a negative electrode material for sodium ion batteries. J Power Sources 342:616–622

    Article  CAS  Google Scholar 

  • McCarthy CL, Cottingham P, Abuyen K et al (2016) Earth abundant CuSbS2 thin films solution processed from thiol–amine mixtures. J Mater Chem C 4(26):6230–6233

    Article  CAS  Google Scholar 

  • Qu B, Zhang M, Lei D et al (2011) Facile solvothermal synthesis of mesoporous Cu2SnS3 spheres and their application in lithium-ion batteries. Nanoscale 3(9):3646–3651

    Article  CAS  Google Scholar 

  • Roberts AD, Li X, Zhang H (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev 43(13):4341–4356

    Article  CAS  Google Scholar 

  • Shu B, Han Q (2016) Studies on structural, optical and electrical properties of CuSbS2 nanoparticles. Chalcogenide Lett 13:46–53

    CAS  Google Scholar 

  • Shulga Y M, Rubtsov V, Vasilets V, et al. EELS, XPS and IR study of C60·2S8 compound. Synthetic Metals, 1995, 70(1-3): 1381-2.

  • Takafuji Y, Jo J-i, Tabata Y (2011) Simple PEG modification of DNA aptamer based on copper ion coordination for tumor targeting. J Biomater Sci Polymer Edition 22(9):1179–1195

    CAS  Google Scholar 

  • Tian H, Tan X, Xin F et al (2015) Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy 11:490–499

    Article  CAS  Google Scholar 

  • Wu P, Liu Z, Ruan M et al (2019) Cobalt-phosphate modified Fe-Zn0.2Cd0.8S/CuSbS2 heterojunction photoanode with multiple synergistic effect for enhancing photoelectrochemical water splitting. Appl Surf Sci 476:716–723

    Article  CAS  Google Scholar 

  • Xie J, Xia J, Yuan Y et al (2019) Sb2S3 embedded in carbon–silicon oxide nanofibers as high-performance anode materials for lithium-ion and sodium-ion batteries. J Power Sources 435:226762

    Article  CAS  Google Scholar 

  • Yang B, Wang L, Han J et al (2014) CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem Mater 26(10):3135–3143

    Article  CAS  Google Scholar 

  • Yin H, Hui KS, Zhao X et al (2020) Eco-friendly synthesis of self-supported N-doped Sb2S3-carbon fibers with high atom utilization and zero discharge for commercial full lithium-ion batteries. ACS Appl Energy Mater 3(7):6897–6906

    Article  CAS  Google Scholar 

  • Zakaznova-Herzog VP, Harmer SL, Nesbitt HW et al (2006) High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): structural contributions and surface reconstruction. Surf Sci 600(2):348–356

    Article  CAS  Google Scholar 

  • Zhang Z, Zhou C, Liu Y et al (2013) CuSbS2 nanobricks as electrode materials for lithium ion batteries. Int J Electrochem Sci 8(10059):10067

    Google Scholar 

  • Zhang Z, Fu Y, Zhou C et al (2014) Facile synthesis of CuSbS2 blocks, and their lithium ion storage performance. J Electron Mater 44(1):252–257

    Article  Google Scholar 

  • Zhang J, Li W, Li Y et al (2017) Self-optimizing bifunctional CdS/Cu2S with coexistence of light-reduced Cu0 for highly efficient photocatalytic H2 generation under visible-light irradiation. Appl Catal B: Environ 217:30–36

    Article  CAS  Google Scholar 

  • Zhang Y, Huang J, Yan C et al (2019) High open-circuit voltage CuSbS2 solar cells achieved through the formation of epitaxial growth of CdS/CuSbS2 hetero-interface by post-annealing treatment. Prog Photovoltaics: Res Appl 27(1):37–43

    Article  CAS  Google Scholar 

  • Zhang Q, Zeng Y, Wang X et al (2021) Sb2S3 nanoparticles anchored on N-doped 3D carbon nanofibers as anode material for sodium ion batteries with improved electrochemical performance. J Alloys Comp 881:160594

    Article  CAS  Google Scholar 

  • Zhou J, Dou Q, Zhang L et al (2020) A novel and fast method to prepare a Cu-supported α-Sb2S3@CuSbS2 binder-free electrode for sodium-ion batteries. RSC Advances 10(49):29567–29574

    Article  CAS  Google Scholar 

  • Zou Y, Zhou X, Ma J et al (2020) Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications. Chem Soc Rev 49(4):1173–1208

    Article  CAS  Google Scholar 

Download references

Funding

This work has been financially supported by the National Natural Science Foundation of China (61804069, 52102263) and China Postdoctoral Science Foundation (2021M702416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyun Hao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhi, G., Liu, L. et al. Preparation of rod-like CuSbS2 particles by soft-template synthesis and electrochemical performance toward lithium storage. J Nanopart Res 24, 98 (2022). https://doi.org/10.1007/s11051-022-05481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05481-9

Keywords

Navigation