Skip to main content
Log in

Recent advances of the graphite exfoliation processes and structural modification of graphene: a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Graphene, which is made up of single-layer sp2 graphite, has stimulated the interest of researchers in a variety of application fields, including electronics, pharmaceuticals, and chemicals, due to its superior properties. Large-scale production of graphene is essential for the material to be viable and widely used. One of the most efficient methods of accomplishing a huge amount at a reasonable cost is to exfoliate graphite to produce graphene. The purpose of this paper is to analyze several exfoliation procedures based on a common mechanical and chemical mechanism, because a detailed analysis of the exfoliation phenomenon can lead to valuable insights about how to generate high-quality graphene more economically by optimizing exfoliation approaches. In this study, the focus is given on the extensively employed mechanical exfoliation, such as micromechanical cleavage method, sonication method, ball milling method, and fluid mechanics method and chemical exfoliation, such as chemical vapor deposition and chemical method. This study will also focus on the chemical functionalization of graphene, such as covalent functionalization and non-covalent functionalization. This review will give a deep knowledge about graphite exfoliation and functionalization phenomenon, which will guide in the right way for commercial bulk graphene synthesis with less defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29

Similar content being viewed by others

References

  • Olabi AG, Abdelkareem MA, Wilberforce T, Sayed ET (2021) Application of graphene in energy storage device – a review. Renew Sustain Energy Rev 135:110026

    Article  CAS  Google Scholar 

  • Martins F, Felgueiras C, Smitkova M, Caetano N (2019) Analysis of fossil fuel energy consumption and environmental impacts in European Countries. Energies 12(6):964

    Article  CAS  Google Scholar 

  • Abdullah WSW, Osman M, Ab Kadir MZA, Verayiah R (2019) The potential and status of renewable energy development in Malaysia. Energies 12(12):2437

    Article  Google Scholar 

  • Vaka M, Walvekar R, Rasheed AK, Khalid M (2020) A review on Malaysia’s solar energy pathway towards carbon-neutral Malaysia beyond Covid’19 pandemic. Journal of Cleaner Production 273(12):122834

  • Gür TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science 11:2696–2767

  • Das CK, Bass O, Kothapalli G, Mahmoud TS, Habibi D (2018) Overview of energy storage systems in distribution networks: placement, sizing, operation, and power quality. Renew Sustain Energy Rev 91:1205–1230

    Article  Google Scholar 

  • Sumdani MG, Islam MR, Yahaya ANA, Isa N (2018) Acid-Based Surfactant-Aided Dispersion of Multi-Walled Carbon Nanotubes in Epoxy-Based Nanocomposites. Polymer Engineering & Science 59(2):80–87

  • Li X, Zhi L (2018) Graphene hybridization for energy storage applications. Chem Soc Rev 47(9):3189–3216

    Article  CAS  Google Scholar 

  • Armano A, Agnello S (2019) Two-dimensional carbon: a review of synthesis methods, and electronic, optical, and vibrational properties of single-layer graphene. C – J Carbon Res 5(4):67

    Article  CAS  Google Scholar 

  • Sahoo NG, Pan Y, Li L, Chan SH (2012) Graphene-based materials for energy conversion. Adv Mater 24(30):4203–4210

    Article  CAS  Google Scholar 

  • Sumdani MG, Islam MR, Yahaya ANA (2018) Effects of variation of steric repulsion between multiwall carbon nanotubes and anionic surfactant in epoxy nanocomposites. Journal of Applied Polymer Science 135(48):46883

  • Du Y, Xiao P, Yuan J, Chen J (2020) Research progress of graphene-based materials on flexible supercapacitors. Coatings 10:892

    Article  CAS  Google Scholar 

  • Yan Y, Nashath FZ, Chen S, Manickam S, Lim SS, Zhao H, Lester E, Wu T, Pang CH (2020) Synthesis of graphene: potential carbon precursors and approaches. Nanotechnol Rev 9(1):1284–1314

    Article  CAS  Google Scholar 

  • Bohm S, Ingle A, Bohm HLM, Fenech-Salerno B, Wu S, Torrisi F (2021) Graphene production by cracking. Philos Trans R Soc A 379:20200293

    Article  CAS  Google Scholar 

  • Islam MR, Parimalam M, Sumdani MG, Taher A, Asyadi F, & Yenn TW (2019) Rheological and antimicrobial properties of epoxy-based hybrid nanocoatings. Polymer Testing 81(2):106202

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  • Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, … Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

  • Yao Y, Lin Z, Li Z, Song X, Moon K-S, Wong C (2012) Large-scale production of two-dimensional nanosheets. J Mater Chem 22(27):13494

    Article  CAS  Google Scholar 

  • Jeon I-Y, Choi H-J, Jung S-M, Seo J-M, Kim M-J, Dai L, Baek J-B (2012) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135(4):1386–1393

    Article  Google Scholar 

  • Lee JH, Shim CM, Lee BS (2013) Graphene in edge-carboxylated graphite by ball milling and analyses using finite element method. Int J Mater Sci Applic 2(6):209–220

    CAS  Google Scholar 

  • Yi M, Shen Z, Zhu J (2014) A fluid dynamics route for producing graphene and its analogues. Chin Sci Bull 59(16):1794–1799

    Article  CAS  Google Scholar 

  • Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102(30):10451–10453

    Article  CAS  Google Scholar 

  • Jayasena B, Subbiah S (2011) A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett 6(1):95

    Article  Google Scholar 

  • Chen J, Duan M, Chen G (2012) Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem 22(37):19625

    Article  CAS  Google Scholar 

  • Torres L, Gomez Armas L, Carlos Seabra A (2014) Optimization of micromechanical cleavage technique of natural graphite by chemical treatment. Graphene 03(01):1–5

    Article  Google Scholar 

  • Sinclair RC, Suter JL, Coveney PV (2019) Micromechanical exfoliation of graphene on the atomistic scale. Phys Chem Chem Phys 21:5716–5722

    Article  CAS  Google Scholar 

  • Hanny A, Islam MR, Sumdani MG, & Rashidi NM (2019) The effects of sintering on the properties of epoxy composites reinforced with chicken bone-based hydroxyapatites. Polymer Testing 78(6):105987

  • Cui X, Zhang C, Hao R, Hou Y (2011) Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3(5):2118

    Article  CAS  Google Scholar 

  • Raju APA (2015) Production and applications of graphene and its composites. PhD thesis. The University of Manchester. Manchester

  • Lin L, Zheng X, Zhang S, Allwood DA (2014) Surface energy engineering in the solvothermal deoxidation of graphene oxide. Adv Mater Interfaces 1(3):1300078

    Article  Google Scholar 

  • Turner P, Hodnett M, Dorey R, Carey JD (2019) Controlled sonication as a route to in-situ graphene flake size control. Sci Rep 9:8710

    Article  Google Scholar 

  • Polyakova (Stolyarova) EY, Rim KT, Eom D, Douglass K, Opila RL, Heinz TF, Flynn GW (2011) Scanning tunneling microscopy and x-ray photoelectron spectroscopy studies of graphene films prepared by sonication-assisted dispersion. ACS Nano 5(8):6102–6108

  • Skaltsas T, Ke X, Bittencourt C, Tagmatarchis N (2013) Ultrasonication induces oxygenated species and defects onto exfoliated graphene. J Phys Chem C 117(44):23272–23278

    Article  CAS  Google Scholar 

  • Gayathri S, Jayabal P, Kottaisamy M, Ramakrishnan V (2014) Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv 4(2):027116

    Article  CAS  Google Scholar 

  • Yi M, Shen Z, Liang S, Liu L, Zhang X, Ma S (2013) Water can stably disperse liquid-exfoliated graphene. Chem Commun 49(94):11059

    Article  CAS  Google Scholar 

  • Bracamonte MV, Lacconi GI, Urreta SE, Foa Torres LEF (2014) On the nature of defects in liquid-phase exfoliated graphene. J Phys Chem C 118(28):15455–15459

    Article  CAS  Google Scholar 

  • Durge R, Kshirsagar RV, Tambe P (2014) Effect of sonication energy on the yield of graphene nanosheets by liquid-phase exfoliation of graphite. Procedia Eng 97:1457–1465

    Article  CAS  Google Scholar 

  • Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4(6):3155–3162

    Article  CAS  Google Scholar 

  • Cunha E, Paiva MC (2019) Composite films of waterborne polyurethane and few-layer graphene—enhancing barrier, mechanical, and electrical properties. J Compos Sci 3:35

    Article  CAS  Google Scholar 

  • Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C (2009) Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun 149(47–48):2172–2176

    Article  CAS  Google Scholar 

  • Ge Y, Wang J, Shi Z, Yin J (2012) Gelatin-assisted fabrication of water-dispersible graphene and its inorganic analogues. J Mater Chem 22(34):17619

    Article  CAS  Google Scholar 

  • Zhang X, Wang L, Lu Q, Kaplan DL (2018) Mass production of biocompatible graphene using silk nanofibers. ACS Appl Mater Interfaces 10(27):22924–22931

    Article  CAS  Google Scholar 

  • Unalan IU, Wan C, Trabattoni S, Piergiovanni L, Farris S (2015) Polysaccharide-assisted rapid exfoliation of graphite platelets into high quality water-dispersible graphene sheets. RSC Adv 5(34):26482–26490

    Article  Google Scholar 

  • Ding JH, Zhao HR, Yu HB (2018) A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Sci Rep 8:5567

    Article  Google Scholar 

  • Castillo AEDR, Pellegrini V, Ansaldo A, Ricciardella F, Sun H, Marasco L, Bonaccorso F (2018) High-yield production of 2D crystals by wet-jet milling. Mater Horiz 5:890–904

    Article  Google Scholar 

  • Li X, Shen J, Wu C, & Wu K (2019) Ball‐Mill‐Exfoliated Graphene: Tunable Electrochemistry and Phenol Sensing. Small 15(48):1805567

  • Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715

    Article  CAS  Google Scholar 

  • Xue Y, Chen H, Qu J, Dai L (2015) Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage. 2D Mater 2(4):044001

    Article  Google Scholar 

  • Sun D, Ye D, Liu P, Tang Y, Guo J, Wang L, Wang H (2017) MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater 8(10):1702383

    Article  Google Scholar 

  • Zhu H, Cao Y, Zhang J, Zhang W, Xu Y, Guo J, … Liu J (2016) One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries. J Mater Sci 51(8):3675–3683

  • Aparna R, Sivakumar N, Balakrishnan A, Sreekumar Nair A, Nair SV, Subramanian KRV (2013) An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants. J Renew Sustain Energy 5(3):033123

    Article  Google Scholar 

  • Deng S, Qi X, Zhu Y, Zhou H, Chen F, Fu Q (2016) A facile way to large-scale production of few-layered graphene via planetary ball mill. Chin J Polym Sci 34(10):1270–1280

    Article  CAS  Google Scholar 

  • Huang G, Lv C, He J, Zhang X, Zhou C, Yang P, … Huang H (2020). Study on preparation and characterization of graphene based on ball milling method. J Nanomater 2020:1–11

  • Poyato R, Verdugo R, Muñoz-Ferreiro C, Gallardo-López Á (2020) Electrochemically exfoliated graphene-like nanosheets for use in ceramic nanocomposites. Materials 13(11):2656

    Article  CAS  Google Scholar 

  • León V, Quintana M, Herrero MA, Fierro JLG, de la Hoz A, Prato M, Vázquez E (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47(39):10936

    Article  Google Scholar 

  • Liu L, Xiong Z, Hu D, Wu G, Chen P (2013) Production of high quality single- or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane. Chem Commun 49(72):7890

    Article  CAS  Google Scholar 

  • Lv Y, Yu L, Jiang C, Chen S, Nie Z (2014) Synthesis of graphene nanosheet powder with layer number control via a soluble salt-assisted route. RSC Adv 4(26):13350

    Article  CAS  Google Scholar 

  • Alinejad B, Mahmoodi K (2017) Synthesis of graphene nanoflakes by grinding natural graphite together with NaCl in a planetary ball mill. Funct Mater Lett 10(04):1750047

    Article  CAS  Google Scholar 

  • Mahmoud AED, Stolle A, Stelter M (2018) Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain Chem Eng 6(5):6358–6369

    Article  Google Scholar 

  • Dash P, Dash T, Rout TK, Sahu AK, Biswal SK, Mishra BK (2016) Preparation of graphene oxide by dry planetary ball milling process from natural graphite. RSC Adv 6(15):12657–12668

    Article  CAS  Google Scholar 

  • Tran VQ, Doan HT, Nguyen NT, Do CV (2019) Preparation of graphene nanoplatelets by thermal shock combined with ball milling methods for fabricating flame-retardant polymers. J Chem 2019:1–6

    Google Scholar 

  • Yang Q, Zhou M, Yang M, Zhang Z, Yu J, Zhang Y, … Li X (2020) High-yield production of few-layer graphene via new-fashioned strategy combining resonance ball milling and hydrothermal exfoliation. Nanomaterials 10(4):667

  • Jeon I-Y, Shin Y-R, Sohn G-J, Choi H-J, Bae S-Y, Mahmood J, … Baek J-B (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci 109(15):5588–5593

  • Piras CC, Fernandez-Prieto S, De Borggraeve WM (2018) Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 1:937–947

    Article  Google Scholar 

  • Zhao W, Fang M, Wu F, Wu H, Wang L, Chen G (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20(28):5817

    Article  CAS  Google Scholar 

  • Al-Sherbini A-S, Bakr M, Ghoneim I, Saad M (2017) Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene. J Adv Res 8(3):209–215

    Article  CAS  Google Scholar 

  • Borah M, Dahiya M, Sharma S, Mathur RB, Dhakate SR (2014) Few layer graphene derived from wet ball milling of expanded graphite and few layer graphene based polymer composite. Mater Focus 3(4):300–309

    Article  CAS  Google Scholar 

  • Kim G-N, Kim J-H, Kim B-S, Jeong H-M, Huh S-C (2016) Study on the thermal conductivity characteristics of graphene prepared by the planetary ball mill. Metals 6(10):234

    Article  Google Scholar 

  • Zhuang S, Nunna BB, Boscoboinik JA, Lee ES (2017) Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed. Int J Energy Res 41(15):2535–2554

    Article  CAS  Google Scholar 

  • Chen X, Dobson JF, Raston CL (2012) Vortex fluidic exfoliation of graphite and boron nitride. Chem Commun 48(31):3703

    Article  CAS  Google Scholar 

  • Yasmin L, Chen X, Stubbs KA, & Raston CL (2013) Optimising a vortex fluidic device for controlling chemical reactivity and selectivity. Scientific Reports 3(1):2282

  • Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL (2013) Functional multi-layer graphene–algae hybrid material formed using vortex fluidics. Green Chem 15(3):650

    Article  CAS  Google Scholar 

  • Tran TS, Park SJ, Yoo SS, Lee T-R, Kim T (2016) High shear-induced exfoliation of graphite into high quality graphene by Taylor-Couette flow. RSC Adv 6(15):12003–12008

    Article  CAS  Google Scholar 

  • Blomquist N, Alimadadi M, Hummelgård M, Dahlström C, Olsen M, & Olin H (2019) Effects of geometry on large-scale tube-shear exfoliation of graphite to multilayer graphene and nanographite in water. Scientific Reports 9(1):8966

  • Yi M, Shen Z (2016) Fluid dynamics: an emerging route for the scalable production of graphene in the last five years. RSC Adv 6(76):72525–72536

    Article  CAS  Google Scholar 

  • Nacken TJ, Damm C, Walter J, Rüger A, Peukert W (2015) Delamination of graphite in a high pressure homogenizer. RSC Adv 5(71):57328–57338

    Article  CAS  Google Scholar 

  • Liang S, Shen Z, Yi M, Liu L, Zhang X, Cai C, Ma S (2015) Effects of processing parameters on massive production of graphene by jet cavitation. J Nanosci Nanotechnol 15(4):2686–2694

    Article  CAS  Google Scholar 

  • Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, … Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13(6):624–630

  • Liu L, Shen Z, Yi M, Zhang X, Ma S (2014) A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv 4(69):36464–36470

    Article  CAS  Google Scholar 

  • Le Ba T, Mahian O, Wongwises S et al (2020) Review on the recent progress in the preparation and stability of graphene-based nanofluids. J Therm Anal Calorim 142:1145–1172

    Article  Google Scholar 

  • Karu AE, Beer M (1966) Pyrolytic Formation of Highly Crystalline Graphite Films. J Appl Phys 37(5):2179–2181

    Article  CAS  Google Scholar 

  • Feng X, Wu J, Bell AT, Salmeron M (2015) An atomic-scale view of the nucleation and growth of graphene islands on Pt surfaces. J Phys Chem C 119:7124–7129

    Article  CAS  Google Scholar 

  • Coraux J, N’Diaye AT, Busse C, Michely T (2008) Structural coherency of graphene on Ir(111). Nano Lett 8(2):565–570

    Article  CAS  Google Scholar 

  • Saeed M, Alshammari Y, Majeed SA, Al-Nasrallah E (2020) Chemical vapour deposition of graphene—synthesis, characterisation, and applications: a review. Molecules 25(17):3856

    Article  CAS  Google Scholar 

  • Adetayo A, Runsewe D (2019) Synthesis and fabrication of graphene and graphene oxide: a review. Open J Compos Mater 9:207–229

    Article  CAS  Google Scholar 

  • Bayram O (2019) A study on 3D graphene synthesized directly on Glass/FTO substrates: Its Raman mapping and optical properties. Ceramics International 45(14):16829–16835

  • Shen B, Huang Z, Ji Z, Lin Q, Chen S, Cui D, & Zhang Z (2019) Bilayer graphene film synthesized by hot filament chemical vapor deposition as a nanoscale solid lubricant. Surface and Coatings Technology 380(3):125061

  • Suk JW, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, … Ruoff RS (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924

  • Chen M, Haddon RC, Yan R, Bekyarova E (2017) Advances in transferring chemical vapour deposition graphene: a review. Mater Horiz 4(6):1054–1063

    Article  CAS  Google Scholar 

  • Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3(4):206–209

    Article  CAS  Google Scholar 

  • Zhang D, Jin Z, Shi J, Wang X, Peng S, Wang S (2015) The electrochemical transfer of CVD-graphene using agarose gel as solid electrolyte and mechanical support layer. Chem Commun 51(14):2987–2990

    Article  CAS  Google Scholar 

  • Mafra DL, Ming T, Kong J (2015) Facile graphene transfer directly to target substrates with a reusable metal catalyst. Nanoscale 7(36):14807–14812

    Article  CAS  Google Scholar 

  • Marchena M, Wagner F, Arliguie T, Zhu B, Johnson B, Fernández M, … Mazumder P (2018) Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Mater 5(3):035022

  • Viculis LM, Mack JJ, Mayer OM, Hahn HT, Kaner RB (2005) Intercalation and exfoliation routes to graphite nanoplatelets. J Mater Chem 15(9):974

    Article  CAS  Google Scholar 

  • Kamali AR, Fray DJ (2013) Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56:121–131

    Article  CAS  Google Scholar 

  • Pu N-W, Wang C-A, Sung Y, Liu Y-M, Ger M-D (2009) Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett 63:1987–1989

    Article  CAS  Google Scholar 

  • Safavi A, Tohidi M, Mahyari FA, Shahbaazi H (2012) One-pot synthesis of large scale graphene nanosheets from graphite-liquid crystal composite via thermal treatment. J Mater Chem 22:3825–3831

    Article  CAS  Google Scholar 

  • Dhakate SR et al (2011) An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon 49:1946–1954

    Article  CAS  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  • Sun W, Lu X, Tong Y, Zhang Z, Lei J, Nie G, Wang C (2014) Fabrication of highly dispersed palladium/graphene oxide nanocomposites and their catalytic properties for efficient hydrogenation of p-nitrophenol and hydrogen generation. Int J Hydrogen Energy 39(17):9080–9086

    Article  CAS  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  • Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Google Scholar 

  • Staudenmaier L (1898) Process for the preparation of graphitic acid. Rep German Chem Soc 31(2):1481–1487

    CAS  Google Scholar 

  • Muzyka R, Kwoka M, Smędowski Ł, Díez N, Gryglewicz G (2017) Oxidation of graphite by different modified Hummers methods. New Carbon Mater 32(1):15–20

    Article  CAS  Google Scholar 

  • Santamaría-Juárez G, Gomez Barojas E, Quiroga-González E, Sánchez-Mora E, Quintana M, & Santamaría-Juárez JD (2019) Safer modified Hummers’ method for the synthesis of graphene oxide with high quality and high yield. Materials Research Express 6(12):125631

  • Speranza G (2019) The Role of Functionalization in the applications of carbon materials: an overview. C– J Carbon Res 5(4):84

    Article  Google Scholar 

  • Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40(5):2644

    Article  CAS  Google Scholar 

  • Kim S, Song Y, Takahashi T, Oh T, Heller MJ (2015) An aqueous single reactor arc discharge process for the synthesis of graphene nanospheres. Small 11(38):5041–5046

    Article  CAS  Google Scholar 

  • Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113(11):4257–4259

    Article  CAS  Google Scholar 

  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: The New Two-Dimensional Nanomaterial. Angew Chem Int Ed 48(42):7752–7777

    Article  CAS  Google Scholar 

  • Wang Z, Li N, Shi Z, Gu Z (2010) Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology 21(17):175602

    Article  Google Scholar 

  • Wu Z-S, Ren W, Gao L, Zhao J, Chen Z, Liu B, Cheng H-M (2009) synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417

    Article  CAS  Google Scholar 

  • Wu Y, Wang S, Komvopoulos K (2020) A review of graphene synthesis by indirect and direct deposition methods. J Mater Res 35(1):76–89

    Article  CAS  Google Scholar 

  • Presel F, Tetlow H, Bignardi L, Lacovig P, Tache CA, Lizzit S, … Baraldi A (2018) Graphene growth by molecular beam epitaxy: an interplay between desorption, diffusion and intercalation of elemental C species on islands. Nanoscale 10(16):7396–7406

  • Wurstbauer U, Schiros T, Jaye C, Plaut AS, He R, Rigosi A, … Garcia JM (2012). Molecular beam growth of graphene nanocrystals on dielectric substrates. Carbon 50(13):4822–4829

  • Shivaraman S, Barton RA, Yu X, Alden J, Herman L, Chandrashekhar M, … Spencer MG (2009) Free-standing epitaxial graphene. Nano Lett 9(9):3100–3105

  • Aristov VY, Urbanik G, Kummer K, Vyalikh DV, Molodtsova OV, Preobrajenski AB, Knupfer M (2010) Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett 10(3):992–995

    Article  CAS  Google Scholar 

  • Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207

    Article  CAS  Google Scholar 

  • Bottari G, Herranz MÁ, Wibmer L, Volland M, Rodríguez-Pérez L, Guldi DM, … Torres T (2017) Chemical functionalization and characterization of graphene-based materials. Chem Soc Rev 46(15):4464–4500

  • McMurry J, Fayl McCarty RC (2004) Chemistry. Pearson Education, New York

    Google Scholar 

  • Lide DR (2004) CRC Handbook of Chemistry and Physics, 85th edn. Taylor & Francis, New York

    Google Scholar 

  • Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21(31):3191–3195

    Article  CAS  Google Scholar 

  • Crescenzo AD, Ettorre V, Fontana A (2014) Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J Nanotechnol 5:1675–1690

    Article  Google Scholar 

  • Wu S, Wang X, Li Z, Zhang S, Xing F (2020) Recent advances in the fabrication and application of graphene microfluidic sensors. Micromachines 11(12):1059

    Article  Google Scholar 

  • Benda R, Zucchi G, Cancès E, Lebental B (2020) Insights into the π – π interaction driven non-covalent functionalization of carbon nanotubes of various diameters by conjugated fluorene and carbazole copolymers. J Chem Phys 152(6):064708

    Article  CAS  Google Scholar 

  • Faiza W, Firouzi A, Islam MR., Sumdani MG, & Taher A (2021) Degradation analysis of epoxy resin composites reinforced with bioprotein: Effects of hydrolysis using papain and bromelain. Polymer Composites 42(6):2717–2727

  • Mustaque AK, Kumar A, Zhang J, Kumar M (2021) Recent advances and prospects in reduced graphene oxide-based photodetectors. J Mater Chem C 9:8129–8157

    Article  Google Scholar 

  • Hani F, Firouzi A, Islam MR, & Sumdani MG (2020) Mechanical and thermal properties of fishbone‐based epoxy composites: The effects of thermal treatment. Polymer Composites 42(3):1224–12

  • Lee EC, Kim D, Jurečka P, Tarakeshwar P, Hobza P, Kim KS (2007) Understanding of Assembly phenomena by aromatic−aromatic interactions: benzene dimer and the substituted systems. J Phys Chem A 111(18):3446–3457

    Article  CAS  Google Scholar 

  • Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21(31):3191–3195

    Article  CAS  Google Scholar 

  • Zheng W, Shen B, & Zhai W (2013) Surface Functionalization of Graphene with Polymers for Enhanced Properties, New Progress on Graphene Research, Gong JR, Intech Open

  • Wang Y, Chen X, Zhong Y, Zhu F, Loh KP (2009) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95(6):063302

    Article  Google Scholar 

  • An N, An Y, Hu Z, Guo B, Yang Y, Lei Z (2015) Graphene hydrogels non-covalently functionalized with alizarin: an ideal electrode material for symmetric supercapacitors. J Mater Chem A 3(44):22239–22246

    Article  CAS  Google Scholar 

  • Xu L, Zhang Y, Zhou W, Jiang F, Zhang H, Jiang Q, … Duan X (2020) Fused Heterocyclic Molecules Functionalized N-Doped Reduced Graphene Oxide by Non-Covalent Bonds for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 12(40):45202–45213

  • Layek RK, Nandi AK (2013) A review on synthesis and properties of polymer functionalized graphene. Polymer 54(19):5087–5103

    Article  CAS  Google Scholar 

  • Bocharov GS, Eletskii AV (2020) Percolation conduction of carbon nanocomposites. Int J Mol Sci 21(20):7634

    Article  CAS  Google Scholar 

  • Gao C, Zhang S, Wang F, Wen B, Han C, Ding Y, Yang M (2014) Graphene Networks with low percolation threshold in abs nanocomposites: selective localization and electrical and rheological properties. ACS Appl Mater Interfaces 6(15):12252–12260

    Article  CAS  Google Scholar 

  • Syamimi NF, Islam MR, Sumdani MG, & Rashidi NM (2019) Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites. Polymer Bulletin 77(6):2573–2589

  • Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2Nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477

    Article  CAS  Google Scholar 

  • Yu D, Dai L (2009) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1(2):467–470

    Article  Google Scholar 

  • Perumal S, Atchudan R, Edison TN, Shim J-J, Lee YR (2021) Exfoliation and noncovalent functionalization of graphene surface with poly-N-vinyl-2-pyrrolidone by in situ polymerization. Molecules 26(6):1534

    Article  CAS  Google Scholar 

  • Park J, Yan M (2012) Covalent Functionalization of graphene with reactive intermediates. Accounts Chem Res 46(1):181–189

    Article  Google Scholar 

  • Englert JM, Dotzer C, Yang G, Schmid M, Papp C, Gottfried JM, … Hirsch A (2011) Covalent bulk functionalization of graphene. Nat Chem 3(4):279–286

  • Rojano SS (2016) Functionalization of carbon nanomaterials with nitrogen, halides and oxides. PhD thesis. Universitat Autònoma de Barcelona. Barcelona

  • Daniel A, Islam MR, Sumdani MG, & Firouzi A (2020) Influence of hydration on the mechanical, structural, thermal, and morphological properties of cement filled epoxy composites. Journal of Vinyl and Additive Technology 27(1):119–126

  • Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822

    Article  CAS  Google Scholar 

  • Fraga TJM, Sobrinho MAdM, Carvalho MN, Ghislandi MG (2020) State of the art: synthesis and characterization of functionalized graphene nanomaterials. Nano Ex 1:022002

  • Maio A, Pibiri I, Morreale M, Mantia FPL, Scaffaro R (2021) An overview of functionalized graphene nanomaterials for advanced applications. Nanomaterials. 11:1717

    Article  CAS  Google Scholar 

  • Zhu Y, Ji H, Cheng H-M, Ruoff RS (2017) Mass production and industrial applications of graphene materials. Natl Sci Rev 5(1):90–101

    Article  Google Scholar 

  • Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188

    Article  CAS  Google Scholar 

  • Ciesielski A, Samorì P (2014) Grapheneviasonication assisted liquid-phase exfoliation. Chem Soc Rev 43(1):381–398

    Article  CAS  Google Scholar 

  • Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49

    Article  CAS  Google Scholar 

  • Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499

    Article  CAS  Google Scholar 

  • Lin L, Peng H, Liu Z (2019) Synthesis challenges for graphene industry. Nat Mater 18(6):520–524

    Article  CAS  Google Scholar 

  • Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, … Iijima S (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578

  • Vlassiouk I, Fulvio P, Meyer H, Lavrik N, Dai S, Datskos P, Smirnov S (2013) Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54:58–67

    Article  CAS  Google Scholar 

  • Yoon HW, Cho YH, Park HB (2015) Graphene-based membranes: status and prospects. Philos Trans R Soc A Math Phys Eng Sci 374(2060):20150024

    Article  Google Scholar 

  • Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400

    Article  CAS  Google Scholar 

  • Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63

    Article  CAS  Google Scholar 

  • Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O, … Fasel R (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun (45):6919

  • Jiang D, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024

    Article  CAS  Google Scholar 

  • Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J (2012) Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4(17):5477

    Article  CAS  Google Scholar 

  • Ahmed F, Brajpuriya RK, Handa Y (2017) A review on graphene based solar cells. Int J Recent Sci Res 8(5):16893–16896

    Article  Google Scholar 

  • Li X, Zhu H, Wang K, Cao A, Wei J, Li C, … Wu D (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22(25):2743–2748

  • Shi E, Li H, Xu W, Wu S, Wei J, Fang Y, Cao A (2015) Improvement of graphene–Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy 17:216–223

    Article  CAS  Google Scholar 

  • Czerniak-Reczulska M, Niedzielska A, Jędrzejczak A (2015) Graphene as a material for solar cells applications. Adv Mater Sci 15(4):67–81

    Article  CAS  Google Scholar 

  • Singla S, Sharma S, Basu S, Shetti NP, Aminabhavi TM (2021) Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. Int J Hydrogen Energy 46(68):33696–33717

    Article  CAS  Google Scholar 

  • Singla S, Sharma S, Basu S, Shetti NP, & Aminabhavi TM (2021) Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. International Journal of Hydrogen Energy 46(68):33696–33717

  • Lavorato C, Primo A, Molinari R, Garcia H (2013) N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures. Chemistry - A Eur J 20(1):187–194

    Article  Google Scholar 

  • Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20(14):2801

    Article  CAS  Google Scholar 

  • Yeh T-F, Cihlář J, Chang C-Y, Cheng C, Teng H (2013) Roles of graphene oxide in photocatalytic water splitting. Mater Today 16(3):78–84

    Article  CAS  Google Scholar 

  • Zeng P, Zhang Q, Zhang X, Peng T (2012) Graphite oxide–TiO2 nanocomposite and its efficient visible-light-driven photocatalytic hydrogen production. J Alloys Compd 516:85–90

    Article  CAS  Google Scholar 

  • Xiang Q, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic h2-production activity of graphene/C3N4 composites. J Phys Chem C 115(15):7355–7363

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Centre of Research and Innovation, CoRI, Universiti Kuala Lumpur, for providing financial support for this research by STRG, str17033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Islam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumdani, M.G., Islam, M.R., Yahaya, A.N.A. et al. Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. J Nanopart Res 23, 253 (2021). https://doi.org/10.1007/s11051-021-05371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05371-6

Keywords

Navigation