Skip to main content
Log in

Influence of size, shape and dimension on glass transition and Kauzmann temperature of silver (Ag) and tantalum (Ta) nanoparticles

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A simple model is developed for the investigation of size, shape and dimension dependent glass transition temperature (Tg) and Kauzmann temperature (TK) of nanoparticles. The model is based on thermodynamical quantity cohesive energy and is free from fitting parameters and approximations. To check the validity of the model, calculations on the size, shape and dimension dependent glass transition (Tg) and Kauzmann temperature (TK) are performed for silver (Ag) and tantalum (Ta) nanoparticles (NPs) of different shapes. The considered shapes are spherical, tetrahedral, octahedral and icosahedral accompanied with zero-, one- and two-dimensional geometries. Our results reveal that the Tg and TK strongly depend on the size of the nanoparticles. As the size of the NPs decreases, Tg and TK decrease. It is observed that both temperatures follow the trend as (icosahedral, D) > (spherical, D) > (octahedral, D) > (tetrahedral, D) for selected Ag and Ta nanoparticles. However, in terms of dimension, they show the d = 0 < d = 1 < d = 2 trend. The calculated values of glass transition and Kauzmann temperatures for both considered nanoparticles have good agreement with available molecular dynamics (MD) simulation and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146

    CAS  Google Scholar 

  • Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale J. Phys: Condens Matter 17:461

    Google Scholar 

  • Ao ZM, Zheng WT, Jiang Q (2007) Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles. Nanotechnology 18:255706–255712

    Google Scholar 

  • Attili A, Gallo P, Rovere M (2005) Inherent structures and Kauzmann temperature of confined liquids Phys. Rev E 71:031204

    CAS  Google Scholar 

  • Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) Crossover among structural motifs in transition and noble-metal clusters. J Chem Phys 116:3856–3863

    CAS  Google Scholar 

  • Bhatt P, Pratap A, Jha PK (2012) Study of size-dependent glass transition and Kauzmann temperatures of tin dioxide nanoparticles. J Therm Anal Calorim 110:535–538

    CAS  Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    CAS  Google Scholar 

  • Coluzzi B, Parisi G, Verrocchio P (2000) Thermodynamical liquid-glass transition in a Lennard-Jones Binary Mixture. Phys Rev Lett 84:306–309

    CAS  Google Scholar 

  • Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267

    CAS  Google Scholar 

  • Guisbiers G (2010) Size-dependent materials properties toward a universal equation Nanoscale Res. Lett. 5:1132–1136

    CAS  Google Scholar 

  • Gao W, Zhao M, Jiang Q (2007) A DFT study on electronic structures and catalysis of Ag12O6/Ag(111) for ethylene Epoxidation. J Phys Chem C 111:4042–4046

    CAS  Google Scholar 

  • Gibbs JH, Di Marzio EA (1958) Nature of the glass transition and the glassy state. J Chem Phys 28:373–383

    CAS  Google Scholar 

  • Guisbiers G, Kazan M, Van Overschelde O, Wautelet M, Pereira S (2008) Mechanical and thermal properties of metallic and semiconductive nanostructures. J Phys Chem C 112:4097–4103

    CAS  Google Scholar 

  • Guisbiers G, Wautelet M (2006) Size, shape and stress effects on the melting temperature of nano-polyhedral grains on a substrate. Nanotechnology 17:2008–2011

    CAS  Google Scholar 

  • Jiang Q, Lang XY (2004) Glass transition of low-dimensional polystyrene Macromol. Rapid Commun 25:825

    CAS  Google Scholar 

  • Jiang Q, Zhao M, Xu XY (1997) Kauzmann temperature of alloys obtained by different methods. Phil MagB 76:1–10

    CAS  Google Scholar 

  • Kauzmann W (1948) The nature of the glassy state and the behaviour of liquids at low temperatures. Chem Rev 43:219–256

    CAS  Google Scholar 

  • Khan MM, Nemati A, Rahman ZU, Shah UH, Asgar H, Haider W (2017) Recent advancements in bulk metallic glasses and their applications: a review. Critical Reviews In Solid State and Materials Sciences 43:233–268

    Google Scholar 

  • Klose G, Fecht HJ (1994) Vitrification close to the Kauzmann point of eutectic Au Pb Sb alloys Mater. Sci. Eng. A 180:77–80

    Google Scholar 

  • Krakoviack V (2005) Liquid-glass transition of a fluid confined in a disordered porous matrix: a mode-coupling theory. Phys Rev Lett 94:065703–065707

    CAS  Google Scholar 

  • Kumar G, Desai A, Schroers J (2011) Bulk metallic glass: the smaller the better Adv. Mater. 23:461–476

    CAS  Google Scholar 

  • Li YZ, Sun YT, Lu Z, Li MZ, Bai HY, Wang WH (2017) Size effect on dynamics and glass transition in metallic liquids and glasses. J Chem Phys 146:224502

    CAS  Google Scholar 

  • Lu HM, Li PY, Cao ZH, Meng XK (2009) Size-, Shape-, and Dimensionality-Dependent Melting Temperatures of Nanocrystals. J Phys Chem C 113:7598–7602

    CAS  Google Scholar 

  • Luo J, Wang J, Bitzek E, Huang JY, Zhang H, Tong L, Yang Q, Li J, Mao SX (2016) Size-dependent brittle-to-ductile transition in silica glass nanofibers. Nano Lett 16:105–113

    CAS  Google Scholar 

  • Mishra S, Jha PK, Pratap A (2012) Study of size-dependent glass transition and Kauzmann temperature of titanium dioxide nanoparticles. J Therm Anal Calorim 107:65–68

    CAS  Google Scholar 

  • Morones J et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    CAS  Google Scholar 

  • Nanda KK, Sahu SN, Behera SN (2002) Liquiddrop model for the size-dependent melting of lowdimensional systems, Phys. Rev. A 66, 013208

  • Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347

    CAS  Google Scholar 

  • Jiang Q, Shi HX, Zhao M (1999) Melting thermodynamics of organic nanocrystals. J Chem Phys 111:5

    Google Scholar 

  • Kumar R, Kumar M (2012) Effect of size on cohesive energy, melting temperature and Debye temperature of nanomaterial. Indian J pure Appl. Phys. 50:329–334

    CAS  Google Scholar 

  • Bhatt S, Kumar M (2017) Effect of size and shape on melting and superheating of free standing and embedded nanoparticles. J Phys Chem Solids 106:112–117

    CAS  Google Scholar 

  • Safaei A, Shandiz M, Sanjabi A, Barber S, Z. H. (2008) Modeling the melting temperature of nanoparticles by an analytical approach. J Phys Chem C 112:99–155

    CAS  Google Scholar 

  • Saslow WS (1988) Scenario for the Vogel-Fulcher “law”. Phys Rev B 37:676–678

    CAS  Google Scholar 

  • Sastry S (2001) The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409:164–167

    CAS  Google Scholar 

  • Sastry S, Debenedetti PG, Stillinger FH (1998) Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393:554–557

    CAS  Google Scholar 

  • Scala A, Starr FW, Nave EL, Sciortino F, Stanley HE (2000) Configurational entropy and diffusivity of supercooled water. Nature 406:166–175

    CAS  Google Scholar 

  • Seifert G (2004) Nanocluster magic. Nat Mater 3:77–78

    CAS  Google Scholar 

  • Stillinger FH et al (1999) J Phys Chem B 103:7390

    Google Scholar 

  • Sun J, He LB, Lo YC, Xu T, Bi HC, Sun L, Zhang Z, Mao SX, Li J (2014) Liquid-like pseudo-elasticity of sub-10-nm crystalline silver particles. Nat Mater 13:1007–1012

    CAS  Google Scholar 

  • Tanaka H (2005) Two-order-parameter model of the liquid–glass transition. III. Universal patterns of relaxations in glass-forming liquids. J Non-Cryst Solids 351:3396–3413

    CAS  Google Scholar 

  • Qi WH (2005) Size effect on melting temperature of nanosolids. Physica B 368(2005):46–50

    CAS  Google Scholar 

  • Wang Y et al (2004) Synthesis and phase structure of tantalum nanoparticles. Mater Lett 58:3017–3020

    CAS  Google Scholar 

  • Yu HB, Luo Y, Samwer K (2013) Ultrastable metallic glass. Adv Mater 25:5904–5908

    CAS  Google Scholar 

  • Yu HB et al (2015) Suppression of β relaxation in vapor-deposited ultrastable glasses. Phys Rev Lett 115:185501–185506

    CAS  Google Scholar 

  • Zhang X et al (2018) Size and shape dependent melting temperature of metallic nanomaterials J. Phys: Condens Matter 31:7

    Google Scholar 

  • Zhong L, Wang J, Sheng H, Zhang Z, Mao SX (2014) Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512:177–180

    CAS  Google Scholar 

Download references

Funding

Authors are thankful to the Science and Engineering Research Board (SERB-SB/S2/CMP-0005/2013) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafulla K. Jha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, C.S., Pratap, A. & Jha, P.K. Influence of size, shape and dimension on glass transition and Kauzmann temperature of silver (Ag) and tantalum (Ta) nanoparticles. J Nanopart Res 22, 218 (2020). https://doi.org/10.1007/s11051-020-04955-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04955-y

Keywords

Navigation