Skip to main content
Log in

Efficient fluorescence quenching of CdSe quantum dots on epitaxial GaAs nanostructures

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Interaction of CdSe quantum dots (QDs) with epitaxially grown GaAs nanostructures has been studied using photoluminescence (PL) technique. Highly fluorescent CdSe QDs of size 3.9 nm were synthesized by colloidal method and coated over GaAs nanostructures grown on GaAs (111)B substrate by metal organic vapor phase epitaxy (MOVPE) using self-assembled Ga droplets as catalyst. Effect of conditions like catalyst growth time and temperature on the growth of GaAs nanostructures has also been studied. Highly uniform tapered hexagonal nanostructures of height around 500 nm were obtained in nearly 100% yield at 420 °C using Ga droplets grown for 10 s. The fluorescence emission of the CdSe QDs on sample bearing the GaAs nanostructures was measured by steady state and time-resolved photoluminescence (TRPL) techniques and compared with the one obtained on bare substrate. Enhanced quenching of the fluorescence of QDs has been witnessed on the sample in which GaAs nanostructures were present. It has been attributed to more efficient defect-related non-radiative relaxation of excited QDs on the surface of six {110} side facets of the GaAs nanostructures that were not present in the bare substrate. The detailed analysis of the TRPL characteristics of the samples has suggested Förster-like resonance energy transfer (FRET)-based relaxation of CdSe QDs on GaAs nanostructures through shallow traps with significantly reduced average lifetime and the high quenching efficiency.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Achermann M, Petruska MA, Kos S, Smith DL, Koleske DD, Klimov VI (2004) Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429:642–646

    Article  CAS  Google Scholar 

  • Basko D, La Rocca GC, Bassani F, Agranovich VM (1999) Förster energy transfer from a semiconductor quantum well to an organic material overlayer. Eur Phys J B 8:353–362

    Article  CAS  Google Scholar 

  • Brown E, Sheng C, Shimamura K, Shimojo F, Nakano A (2015) Enhanced charge recombination due to surfaces and twin defects in GaAs nanostructures. J Appl Phys 117:054307

    Article  Google Scholar 

  • Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560

    Article  CAS  Google Scholar 

  • Chen HS, Hsu CK, Hong HY (2006) InGaN-CdSe-ZnSe quantum dots white LEDs. IEEE Photon Technol Lett 18:193–195

    Article  Google Scholar 

  • Ciccognani W, Colangeli S, Longhi PE, Limiti E (2019) Design of a MMIC low-noise amplifier in industrial gallium arsenide technology for E-band 5G transceivers. Microw Opt Technol Lett 61:205–210

    Article  Google Scholar 

  • Friedman O, Korn D, Ezersky V, Golan Y (2017) Chemical epitaxy of CdSe on GaAs. CrystEngComm 19:5381–5389

    Article  CAS  Google Scholar 

  • Golan Y, Hutchison JL, Rubinstein I, Hodes G (1996) Epitaxial Size Control by Mismatch Tuning in Electrodeposited Cd(Se,Te) Quantum Dots on {111} Gold. Adv Mater 8:631–633

    Article  CAS  Google Scholar 

  • Gray HB, Winkler JR (2005) Long-range electron transfer. Proc Natl Acad Sci U S A 102:3534–3539

    Article  CAS  Google Scholar 

  • Grün M, Klingshirn C, Rosenauer A, Zweck J, Gebhardt W (1993) Spatial confinement of misfit dislocations at the interface of CdSe/GaAs(111). Appl Phys Lett 63:2947–2948

    Article  Google Scholar 

  • Jang E, Jun S, Jang H, Lim J, Kim B, Kim Y (2010) White-light-emitting diodes with quantum dot color converters for display backlights. Adv Mater 22:3076–3080

    Article  CAS  Google Scholar 

  • Jasieniak J, Califano M, Watkins SE (2011) Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 5:5888–5902

    Article  CAS  Google Scholar 

  • Jones M, Lo SS, Scholes GD (2009) Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proc Natl Acad Sci U S A 106:3011–3016

    Article  CAS  Google Scholar 

  • Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  CAS  Google Scholar 

  • Ladugin MA, Koval YP, Marmalyuk AA, Petrovskii VA, Bagev TA, Andreev AY, Padalitsa AA, Simakov VA (2013) High-power 850–870-nm pulsed lasers based on heterostructures with narrow and wide waveguides. Quant Electron 43:407–409

    Article  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  • Lee Y-J, Yao Y-C, Tsai M-T, Liu A-F, Yang M-D, Lai J-T (2013) Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. Opt Express 21:A953–A963

    Article  Google Scholar 

  • Lohani J, Bag RK, Padmavati MVG, Sapra S, Tyagi R (2017) Coalesced nanomorphology, in situ, and ex situ applications of self assembled gallium droplets grown by metal organic chemical vapor deposition. Chem Phys 493:175–182

    Article  CAS  Google Scholar 

  • Lohani J, Sapra S, Tyagi R (2019) Effect of pressure and time on the self catalyzed growth of epitaxial GaAs nanostructures by MOCVD. Vacuum 164:343–348

    Article  CAS  Google Scholar 

  • Marx E, Ginger DS, Walzer K, Stokbro K, Greenham NC (2002) Self-assembled monolayers of CdSe nanocrystals on doped GaAs substrates. Nano Lett 2:911–914

    Article  CAS  Google Scholar 

  • Mittal M, Sapra S (2017) Nanocrystal-dye interactions: studying the feasibility of co-sensitization of dyes with semiconductor nanocrystals. ChemPhysChem 18:2509–2516

    Article  CAS  Google Scholar 

  • Mittal M, Gautam S, Chowdhury PK, Deep S, Sapra S (2019) Role of tryptophan in protein – nanocrystals interaction: energy or charge transfer. Z Phys Chem 233:41–54

    Article  CAS  Google Scholar 

  • Pal A, Srivastava S, Saini P, Raina S, Ingole P, Gupta R, Sapra S (2015) Probing the mechanism of fluorescence quenching of QDs by co(III)-complexes: size of QD and nature of the complex, both dictate energy and electron transfer processes. J Phys Chem C 119:22690–22699

    Article  CAS  Google Scholar 

  • Pristovsek M (2001) Fundamental growth processes on different gallium arsenide surfaces in metal-organic vapor phase epitaxy. Dissertation, TU Berlin

  • Samarth N, Luo H, Furdyna JK, Qadri SB, Lee YR, Ramdas AK, Otsuka N (1990) Molecular beam epitaxy of CdSe and the derivative alloys Zn1-xCdxSe and Cd1-xMxSe. J Electron Mater 19:543–547

    Article  CAS  Google Scholar 

  • Soni U, Pal A, Singh S, Mittal M, Yadav S, Elangovan R, Sapra S (2014a) Simultaneous type-I/type-II emission from CdSe/CdS/ZnSe nano-heterostructures. ACS Nano 8:113–123

    Article  CAS  Google Scholar 

  • Soni U, Tripathy P, Sapra S (2014b) Photocatalysis from fluorescence-quenched CdSe/au nanoheterostructures: a size-dependent study. J Phys Chem Lett 5:1909–1916

    Article  CAS  Google Scholar 

  • Stiff-Roberts AD, Zhang W, Xu J, Peng H, Everitt HO (2007) Spin-cast deposition of CdSe-CdS core-shell colloidal quantum dots on doped GaAs substrates: structural and optical characterization. IEEE Trans Nanotechnol 6:413–420

    Article  Google Scholar 

  • Stringfellow GB (1999) Organometallic vapor-phase epitaxy: theory and practice. Academic, New York

    Google Scholar 

  • Sugaya T, Tayagaki T, Aihara T, Makita K, Oshima R, Mizuno H, Nagato Y, Nakamoto T, Okano Y (2018) Dual-junction GaAs solar cells and their application to smart stacked III–V//Si multijunction solar cells. Appl Phys Express 11:052301

    Article  Google Scholar 

  • Sun Q, Wang YA, Li LS, Wang D, Zhu T, Xu J, Yang C, Li Y (2007) Bright, multicoloured light-emitting diodes based on quantum dots. Nat Photonics 1:717–722

    Article  CAS  Google Scholar 

  • Wang JS, Tsai YH, Wang HH, Ke HX, Tong SC, Yang CS, Wu CH, Shen JL (2013) Enhanced growth of highly lattice-mismatched CdSe on GaAs substrates by molecular beam epitaxy. Appl Surf Sci 270:751–754

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Characterization Division (SSPL) for FESEM & PL measurements and Dr. Mona Mittal (IIT Delhi) for TRPL measurements. The authors wish to thank Director of SSPL, Dr. SeemaVinayak, for support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Lohani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohani, J., Yadav, S., Tyagi, R. et al. Efficient fluorescence quenching of CdSe quantum dots on epitaxial GaAs nanostructures. J Nanopart Res 21, 205 (2019). https://doi.org/10.1007/s11051-019-4649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4649-4

Keywords

Navigation