Skip to main content
Log in

Low temperature synthesis of titanium diboride nanosheets by molten salt–assisted borothermal reduction of TiO2

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

TiB2 nanosheets were synthesized by the borothermal reduction of TiO2 in flowing argon atmosphere with the assistance of MgCl2. Phase transformation was studied by XRD and micromorphology of products was studied by SEM and TEM. In the experiment, the prepared TiB2 formed the nanoscale lamellar structure. These lamellas agglomerated together to be a net-like structure. Effects of reduction temperature, addition of MgCl2, and its amount were discussed in detail. The results indicated that the presence of MgCl2 accelerated the mass transfer of reactant. Moreover, the co-effects of MgCl2 and B2O3 contributed to the formation of TiB2 nanosheets. TiB2 could dissolve in MgCl2 and B2O3 at high temperature and then recrystallized during the cooling process. The products with a specific surface area of 99.32 m2 g−1 were obtained at 1373 K after reacting for 4 h with a MgCl2:TiO2 molar ratio of 1:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Hamid A, Hamar-Thibault S, Hamar R (1985) Crystal morphology of the compound TiB2. J Cryst Growth 71(3):744–750

    Article  CAS  Google Scholar 

  • Aivazov M, Domashnev I (1971) Electrophysical properties of titanium diboride and alloys in the system Ti-B-N. Inorg Mater 7:1551–1553

    Google Scholar 

  • Bao K, Wen Y, Khangkhamano M, Zhang S (2017) Low-temperature preparation of titanium diboride fine powder via magnesiothermic reduction in molten salt. J Am Ceram Soc 100(5):2266–2272

    Article  CAS  Google Scholar 

  • Basu B, Raju G, Suri A (2006) Processing and properties of monolithic TiB2 based materials. Int Mater Rev 51(6):352–374

    Article  CAS  Google Scholar 

  • Duan Y, Lu GM, Song XF, Sun SY, Yu JG (2011) Preparation and growth mechanism of magnesium borate whiskers with high aspect ratio. J Inorg Mater 26(4):364–368

    Article  CAS  Google Scholar 

  • Fan X, Xiao X, Chen L, Wang X, LiS GH, Wang Q (2013) High catalytic efficiency of amorphous TiB2 and NbB2 nanoparticles for hydrogen storage using the 2LiBH4-MgH2 system. J Mater Chem A 1(37):11368–11375

    Article  CAS  Google Scholar 

  • Fu Z, Koc R (2016) Synthesis of TiC-TiB2 composite powders from carbon coated TiO2 precursors. Ceram Int 42(10):12231–12238

    Article  CAS  Google Scholar 

  • Fu Z, Koc R (2017) Synthesis of TiB2 from a carbon-coated precursors method. J Am Ceram Soc 100(6):2471–2481

    Article  CAS  Google Scholar 

  • Gu Y, Qian Y, Chen L, Zhou F (2003) A mild solvothermal route to nanocrystalline titanium diboride. J Alloys Compd 352(1–2):325–327

    Article  CAS  Google Scholar 

  • Guo WM, Zhang GJ (2009) Reaction processes and characterization of ZrB2 powder prepared by boro/carbothermal reduction of ZrO2 in vacuum. J Am Ceram Soc 92(1):264–267

    Article  CAS  Google Scholar 

  • Guo WM, Zhang GJ, You Y, Wu SH, Lin HT (2014) TiB2 powders synthesis by borothermal reduction in TiO2 under vacuum. J Am Ceram Soc 97(5):1359–1362

    Article  CAS  Google Scholar 

  • Huang F, Yan A, Fu Z, Yin S, Zhang F, Qiang Y (2013) Self-assembled synthesis of TiO2/TiB2 nanowall and its photocatalytic properties. J Alloys Compd 574:49–53

    Article  CAS  Google Scholar 

  • Huang Z, Duan H, Liu J, Zhang H (2016) Preparation of lanthanum cerate powders via a simple molten salt route. Ceram Int 42(8):10482–10486

    Article  CAS  Google Scholar 

  • Hwang Y, Lee JK (2002) Preparation of TiB2 powders by mechanical alloying. Mater Lett 54(1):1–7

    Article  CAS  Google Scholar 

  • İBROŞKA T, KIPÇAK AS, YÜKSEL SA, DERUN E, PİŞKİN S (2015) Synthesis, characterization, and electrical and optical properties of magnesium-type boracite. Turk J Chem 39(5):1025–1037

    Article  Google Scholar 

  • Jensen MS, Einarsrud MA, Grande T (2009) The effect of surface oxides during hot pressing of TiB2. J Am Ceram Soc 92(3):623–630

    Article  CAS  Google Scholar 

  • Jing X, Li Y, Yang Q, Zeng J, Yin Q (2004) Influence of different templates on the textured Bi0.5(Na1-xKx)0.5TiO3 piezoelectric ceramics by the reactive templated grain growth process. Ceram Int 30(7):1889–1893

    Article  CAS  Google Scholar 

  • Kang SH, Kim DJ (2007) Synthesis of nano-titanium diboride powders by carbothermal reduction. J Eur Ceram Soc 27(2–3):715–718

    Article  CAS  Google Scholar 

  • Karvankova P, Vepřek-Heijman M, Zawrah M, Vepřek S (2004) Thermal stability of nc-TiN/a-BN/a-TiB2 nanocomposite coatings deposited by plasma chemical vapor deposition. Thin Solid Films 467(1–2):133–139

    Article  CAS  Google Scholar 

  • Karvankova P, Vepřek-Heijman M, Azinovic D, Veprek S (2006) Properties of superhard nc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma induced chemical vapor deposition. Surf Coat Technol 200(9):2978–2989

    Article  CAS  Google Scholar 

  • Koc R, Hodge D (2000) Production of TiB2 from a precursor containing carbon coated TiO2 and B4C. J Mater Sci Lett 19(8):667–669

    Article  CAS  Google Scholar 

  • Li CC, Chiu CC, Desu SB (1991) Formation of lead niobates in molten salt systems. J Am Ceram Soc 74(1):42–47

    Article  CAS  Google Scholar 

  • Li JJ, Zhao XP, Tao Q, Huang XQ, Zhu PW, Cui T, Wang X (2013) Characterization of TiB2 synthesized at high pressure and high temperature. Acta Phys Sin 62:483–489

    Google Scholar 

  • Li Z, Lee WE, Zhang S (2007a) Low-temperature synthesis of CaZrO3 powder from molten salts. J Am Ceram Soc 90(2):364–368

    Article  CAS  Google Scholar 

  • Li Z, Zhang S, Lee WE (2007b) Molten salt synthesis of LaAlO3 powder at low temperatures. J Eur Ceram Soc 27(10):3201–3205

    Article  CAS  Google Scholar 

  • Lim JW, Lee JJ, Ahn H, Rie KT (2003) Mechanical properties of TiN/TiB2 multilayers deposited by plasma enhanced chemical vapor deposition. Surf Coat Technol 174:720–724

    Article  Google Scholar 

  • Liu Z, Ma J, Sun Y, Song Z, Fang J, Liu Y, Gao C, Zhao J (2010) Low-temperature molten salt synthesis of YAlO3 powders assisted by an electrochemical process. Ceram Int 36(6):2003–2006

    Article  CAS  Google Scholar 

  • Liu Z, Rakita M, Xu W, Wang X, Han Q (2015) Ultrasound assisted salts-metal reaction for synthesizing TiB2 particles at low temperature. Chem Eng J 263:317–324

    Article  CAS  Google Scholar 

  • Lu L, Lai M, Wang H (2000) Synthesis of titanium diboride TiB2 and Ti-Al-B metal matrix composites. J Mater Sci 35(1):241–248

    Article  CAS  Google Scholar 

  • Matsuura K, Obara Y, Kudoh M (2006) Fabrication of TiB2 particle dispersed FeAl-based composites by self-propagating high-temperature synthesis. ISIJ Int 46(6):871–874

    Article  CAS  Google Scholar 

  • Milanović I, Milošević S, Rašković-Lovre Ž, Novaković N, Vujasin R, Matović L, Fernández JF, Sánchez C, Novaković JG (2013) Microstructure and hydrogen storage properties of MgH2–TiB2–SiC composites. Ceram Int 39(4):4399–4405

    Article  Google Scholar 

  • Millet P, Hwang T (1996) Preparation of TiB2 and ZrB2. Influence of a mechano-chemical treatment on the borothermic reduction of titania and zirconia. J Mater Sci 31(2):351–355

    Article  CAS  Google Scholar 

  • Murthy T, Basu B, Balasubramaniam R, Suri A, Subramanian C, Fotedar R (2006) Processing and properties of TiB2 with MoSi2 sinter-additive: a first report. J Am Ceram Soc 89(1):131–138

    Article  CAS  Google Scholar 

  • Nekahi A, Firoozi S (2011) Effect of KCl, NaCl and CaCl2 mixture on volume combustion synthesis of TiB2 nanoparticles. Mater Res Bull 46(9):1377–1383

    Article  CAS  Google Scholar 

  • Neuman EW, Brown-Shaklee HJ, Hilmas GE, Fahrenholtz WG (2018) Titanium diboride-silicon carbide-boron carbide ceramics with super-high hardness and strength. J Am Ceram Soc 101(2):497–501

    Article  CAS  Google Scholar 

  • Pierson H, Randich E, Mattox D (1979) The chemical vapor deposition of TiB2 on graphite. J Alloy Compd 67(2):381–388

    CAS  Google Scholar 

  • Pierson HO, Mullendore A (1980) The chemical vapor deposition of TiB2 from diborane. Thin Solid Films 72(3):511–516

    Article  CAS  Google Scholar 

  • Ran S, Sun H, Wei YN, Wang D, Zhou N, Huang Q (2014) Low-temperature synthesis of nanocrystalline NbB2 powders by borothermal reduction in molten salt. J Am Ceram Soc 97(11):3384–3387

    Article  CAS  Google Scholar 

  • Ren D, Deng Q, Wang J, Yang J, Li Y, Shao J, Li M, Zhou J, Ran S, Du S (2018) Synthesis and properties of conductive B4C ceramic composites with TiB2 grain network. J Am Ceram Soc 00:1–7

  • Sánchez J, Azcona I, Castro F (2000) Mechanical properties of titanium diboride based cermets. J Mater Sci 35(1):9–14

    Article  Google Scholar 

  • Schmidt J, Boehling M, Burkhardt U, Grin Y (2007) Preparation of titanium diboride TiB2 by spark plasma sintering at slow heating rate. Sci Technol Adv Mater 8(5):376–382

    Article  CAS  Google Scholar 

  • Subramanian C, Murthy TC, Suri A (2007) Synthesis and consolidation of titanium diboride. Int J Refract Met Hard Mater 25(4):345–350

    Article  CAS  Google Scholar 

  • Sugiyama K, Iwakoshi S, Motojima S, Takahashi Y (1978) Chemical vapor growth of titanium diboride by a modified hot wire method. J Cryst Growth 43(4):533–536

    Article  CAS  Google Scholar 

  • Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38(1–2):231–252

    Article  Google Scholar 

  • Wang H, Min XM, Wang WM, Fu ZY, Yuan RZ (2002) Quantum chemistry calculation on titanium diboride crystal. Trans Nonferrous Met Soc China 12(6):1229–1233

    CAS  Google Scholar 

  • Wei T, Liu Z, Ren D, Deng X, Deng Q, Huang Q, Ran S (2018) Low temperature synthesis of TaB2 nanorods by molten-salt assisted borothermal reduction. J Am Ceram Soc 101(1):45–49

    Article  CAS  Google Scholar 

  • Welham NJ (2000) Formation of nanometric TiB2 from TiO2. J Am Ceram Soc 83(5):1290–1292

    Article  CAS  Google Scholar 

  • Wen G, Li S, Zhang B, Guo Z (2001) Reaction synthesis of TiB2-TiC composites with enhanced toughness. Acta Mater 49(8):1463–1470

    Article  CAS  Google Scholar 

  • Xi L, Kaban I, Nowak R, Bruzda G, Sobczak N, Eckert J (2018) Wetting, reactivity, and phase formation at interfaces between Ni-Al melts and TiB2 ultrahigh-temperature ceramic. J Am Ceram Soc 101(2):911–918

    Article  CAS  Google Scholar 

  • Yu J, Ma L, Abbas A, Zhang Y, Gong H, Wang X, Zhou L, Liu H (2016a) Carbothermal reduction synthesis of TiB2 ultrafine powders. Ceram Int 42(3):3916–3920

    Article  CAS  Google Scholar 

  • Yu J, Ma L, Zhang Y, Gong H, Zhou L (2016b) Synthesis of TiB2 powders via carbothermal reduction of TiO2, HBO2 and carbon black. Ceram Int 42(4):5512–5516

    Article  CAS  Google Scholar 

  • Zhang S, Jayaseelan DD, Bhattacharya G, Lee WE (2006) Molten salt synthesis of magnesium aluminate (MgAl2O4) spinel powder. J Am Ceram Soc 89(5):1724–1726

    Article  CAS  Google Scholar 

  • Zhang X, Zhang Z, Wang W, Shan J, Che H, Mu J, Wang G (2017) Microstructure and mechanical properties of B4C-TiB2-SiC composites toughened by composite structural toughening phases. J Am Ceram Soc 100(7):3099–3107

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 51804012 and 51725401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, KH., Wang, Y., Yu-Jiang et al. Low temperature synthesis of titanium diboride nanosheets by molten salt–assisted borothermal reduction of TiO2. J Nanopart Res 21, 103 (2019). https://doi.org/10.1007/s11051-019-4560-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4560-z

Keywords

Navigation