Skip to main content
Log in

Changes in the physical properties of silver nanoparticles in cell culture media mediate cellular toxicity and uptake

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Commercially available 10- to 60-nm silver nanoparticles with different surface functional groups were tested for biological activity in different cell lines. Particle uptake and stability were examined in cell culture media to determine the correlation between particle stability, uptake, and cytotoxicity. Trends in rising toxicity with decreasing particle diameter were observed; however, correlations with particle stability or uptake were not observed. The effects of different cell culture media conditions on cellular toxicity were also measured and show a need to better understand how antibiotics, routinely used in cell culture, can transform particle surfaces and how exposure timelines are important to understand how particles that change over time might have different phases of cellular activity over their lifecycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afifi M, Saddick S, Abu Zinada OA (2016) Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 23:754–760

    Article  CAS  Google Scholar 

  • Alqahtani S, Promtong P, Oliver AW, He XT, Walker TD, Povey A, Hampson L, Hampson IN (2016) Silver nanoparticles exhibit size-dependent differential toxicity and induce expression of syncytin-1 in FA-AML1 and MOLT-4 leukaemia cell lines. Mutagenesis 31:695–702

    Article  CAS  Google Scholar 

  • Antsiferova AA, Buzulukov YP, Kashkarov PK, Kovalchuk MV (2016) Experimental and theoretical study of the transport of silver nanoparticles at their prolonged administration into a mammal organism. Crystallogr Rep 61:1020–1026

    Article  CAS  Google Scholar 

  • Azimzada A, Tufenkji N, Wilkinson KJ (2017) Transformations of silver nanoparticles in wastewater effluents: links to Ag bioavailability. Environ Sci Nano 4:1339–1349

    Article  CAS  Google Scholar 

  • Barbasz A, Ocwieja M, Roman M (2017) Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60. Colloids Surf B: Biointerfaces 156:397–404

    Article  CAS  Google Scholar 

  • Behra R, Sigg L, Clift MJD, Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10:20130396

    Article  Google Scholar 

  • Briffa SM, Lynch I, Trouillet V, Bruns M, Hapiuk D, Liu J, Palmer RE, Valsami-Jones E (2017) Development of scalable and versatile nanomaterial libraries for nanosafety studies: polyvinylpyrrolidone (PVP) capped metal oxide nanoparticles. RSC Adv 7:3894–3906

    Article  CAS  Google Scholar 

  • Coccini T, Manzo L, Bellotti V, De Simone U (2014) Assessment of cellular responses after short- and long-term exposure to silver nanoparticles in human neuroblastoma (SH-SY5Y) and astrocytoma (D384) cells. Sci World J 2014:259765

    Article  Google Scholar 

  • Das P, Saulnier C, Carlucci C, Allen-Vercoe E, Shah V, Walker VK (2016) Interaction between a broad-spectrum antibiotic and silver nanoparticles in a human gut ecosystem. J Nanomed Nanotechnol 7:1000408

    Google Scholar 

  • Das B, Tripathy S, Adhikary J, Chattopadhyay S, Mandal D, Dash SK, Das S, Dey A, Dey SK, Das D, Roy S (2017) Surface modification minimizes the toxicity of silver nanoparticles: an in vitro and in vivo study. J Biol Inorg Chem 22:893–918

    Article  CAS  Google Scholar 

  • Farcal L, Torres Andón F, Di Cristo L, Rotoli BM, Bussolati O, Bergamaschi E, Mech A, Hartmann NB, Rasmussen K, Riego-Sintes J, Ponti J, Kinsner-Ovaskainen A, Rossi F, Oomen A, Bos P, Chen R, Bai R, Chen C, Rocks L, Fulton N, Ross B, Hutchison G, Tran L, Mues S, Ossig R, Schnekenburger J, Campagnolo L, Vecchione L, Pietroiusti A, Fadeel B (2015) Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS One 10:e0127174

    Article  Google Scholar 

  • Guo X, Li Y, Yan J, Ingle T, Jones MY, Mei N, Boudreau MD, Cunningham CK, Abbas M, Paredes AM, Zhou T, Moore MM, Howard PC, Chen T (2016) Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays. Nanotoxicology 10:1373–1384

    Article  CAS  Google Scholar 

  • Hartemann P, Hoet P, Proykova A, Fernandes T, Baun A, De Jong W, Filser J, Hensten A, Kneuer C, Maillard J-Y, Norppa H, Scheringer M, Wijnhoven S (2015) Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Mater Today 18:122–123

    Article  Google Scholar 

  • Hsueh Y-H, Lin K-S, Ke W-J, Hsieh C-T, Chiang C-L, Tzou D-Y, Liu S-T (2015) The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released ag+ ions. PLoS One 10:e0144306

    Article  Google Scholar 

  • Hume SL, Chiaramonti AN, Rice KP, Schwindt RK, Maccuspie RI, Jeerage KM (2015) Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response. J Nanopart Res 17:315

    Article  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    Article  CAS  Google Scholar 

  • Kafil V, Omidi Y (2011) Cytotoxic impacts of linear and branched polyethylenimine nanostructures in a431 cells. BioImpacts 1:23–30

    CAS  Google Scholar 

  • Kim T-H, Kim M, Park H-S, Shin US, Gong M-S, Kim H-W (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 100A:1033–1043

    Article  CAS  Google Scholar 

  • Kim R-Y, Yoon J-K, Kim T-S, Yang JE, Owens G, Kim K-R (2015) Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environ Geochem Health 37:1041–1061

    Article  CAS  Google Scholar 

  • Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, Park HM, Song NW, Shin BS, Marshak D, Ahn K, Lee JE, Yu IJ (2013) Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part Fibre Toxicol 10:36

    Article  CAS  Google Scholar 

  • Liang P, Shi H, Zhu W, Gui Q, Xu Y, Meng J, Guo X, Gong Z, Chen H (2017) Silver nanoparticles enhance the sensitivity of temozolomide on human glioma cells. Oncotarget 8:7533–7539

    Google Scholar 

  • Liu G, Li Y, Yang L, Wei Y, Wang X, Wang Z, Tao L (2017) Cytotoxicity study of polyethylene glycol derivatives. RSC Adv 7:18252–18259

    Article  CAS  Google Scholar 

  • Meier C, Voegelin A, Pradas Del Real A, Sarret G, Mueller CR, Kaegi R (2016) Transformation of silver nanoparticles in sewage sludge during incineration. Environ Sci Technol 50:3503–3510

    Article  CAS  Google Scholar 

  • Molleman B, Hiemstra T (2017) Time, pH, and size dependency of silver nanoparticle dissolution: the road to equilibrium. Environ Sci Nano 4:1314–1327

    Article  CAS  Google Scholar 

  • Nair B (1998) Final report on the safety assessment of Polyvinylpyrrolidone (PVP). Int J Toxicol 17:95–130

    Article  CAS  Google Scholar 

  • Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183

    Article  CAS  Google Scholar 

  • Orbea A, Gonzalez-Soto N, Lacave JM, Barrio I, Cajaraville MP (2017) Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish. Comp Biochem Physiol C 199:59–68

    CAS  Google Scholar 

  • Reidy B, Haase A, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350

    Article  CAS  Google Scholar 

  • Repetto G, Del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131

    Article  CAS  Google Scholar 

  • Salomoni R, Léo P, Montemor AF, Rinaldi BG, Rodrigues MFA (2017) Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 10:115–121

    Article  CAS  Google Scholar 

  • Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 3:218–228

    Article  CAS  Google Scholar 

  • Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL (2014) Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interf Sci 204:15–34

    Article  CAS  Google Scholar 

  • Tejamaya M, Romer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–7017

    Article  CAS  Google Scholar 

  • Urbańska K, Pająk B, Orzechowski A, Sokołowska J, Grodzik M, Sawosz E, Szmidt M, Sysa P (2015) The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells. Nanoscale Res Lett 10:98

    Article  Google Scholar 

  • Vazquez-Munoz R, Borrego B, Juarez-Moreno K, Garcia-Garcia M, Mota Morales JD, Bogdanchikova N, Huerta-Saquero A (2017) Toxicity of silver nanoparticles in biological systems: does the complexity of biological systems matter? Toxicol Lett 276:11–20

    Article  CAS  Google Scholar 

  • Wen R, Hu L, Qu G, Zhou Q, Jiang G (2016) Exposure, tissue biodistribution, and biotransformation of nanosilver. NanoImpact 2:18–28

    Article  Google Scholar 

  • Xue Y, Zhang T, Zhang B, Gong F, Huang Y, Tang M (2016) Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media. J Appl Toxicol 36:352–360

    Article  CAS  Google Scholar 

  • Yang L, Kuang H, Zhang W, Aguilar ZP, Wei H, Xu H (2017) Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci Rep 7:3303

    Article  Google Scholar 

  • Zhao C-M, Campbell P, Wilkinson K (2016) When are metal complexes bioavailable? Environ Chem 13:425–433

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the National Research Council of Canada for supporting and funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Kennedy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest..

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, D.C., Gies, V., Jezierski, A. et al. Changes in the physical properties of silver nanoparticles in cell culture media mediate cellular toxicity and uptake. J Nanopart Res 21, 132 (2019). https://doi.org/10.1007/s11051-019-4550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4550-1

Keywords

Navigation