Skip to main content
Log in

Using a DiSCmini classifier for real-time determination of ultrafine particle mass concentration—application to diesel particle measurement

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Exposure to ultrafine particles (particle diameter < 100 nm) in workplace atmospheres requires direct-reading measuring instruments. The DiSCmini (Testo®) is a portable device designed for the real-time measurement of particle number concentration and average diameter. However, exposure to airborne particles is traditionally expressed in terms of mass concentration; this knowledge of mass also allows comparison with other measurement methods as well as occupational exposure limits. In this study, the mass concentration was determined from the two parameters measured by the DiSCmini, i.e., the number concentration and the average diameter. The calculation of the mass concentration was made possible by taking into account particle number size distribution and effective density. Different approaches were considered to simplify the calculations as much as possible. These approaches were tested in the laboratory with combustion test aerosols generated from a diesel engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Anderson J, Mamakos A, Giechaskiel B et al. (2010) Particle measuring program (PMP) heavy-duty inter-laboratory correlation. Exercise (ILCE-HD), Final Report, GRPE-59-12

  • Bau S, Zimmermann B, Payet R, Witschger O (2015) A laboratory study of the performance of the handheld diffusion size classifier (DiSCmini) for various aerosols in the 15-400 nm range. Environ Sci Processes Impacts 17:261–269

    Article  CAS  Google Scholar 

  • Bau S, Witschger O, Galland B, Martin P (2016) Real-time metrology of hazardous substances at workplaces: advantages and limitations. Gefahrstoffe – Reinhaltung der Luft 76:442–445

    CAS  Google Scholar 

  • Bémer D, Subra I (2017) Monitoring particle emission for non-road diesel machineries equipped with particulate filters. J Aerosol Sci 113:153–165

    Article  Google Scholar 

  • Bourdrel T, Bind M-A, Béjot Y, Morel O, Argacha JF (2017) Cardiovascular effects of air pollution. Arch Cardiovasc Dis 110:634–642. https://doi.org/10.1016/J.acvd.2017.05.003

    Article  Google Scholar 

  • Buonanno G, Jayaratne Rohan E, Morawska L, Stabile L (2014) Metrological performances of a diffusion charger particle counter for personal monitoring. Aerosol Air Qual Res 14:156–167

    Article  Google Scholar 

  • DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL (2004) Particle morphology and density characterization by combined mobility and aerodynamic diameter measurement. Aerosol Sci Technol 38:1185–1205

    Article  CAS  Google Scholar 

  • Eastlake AC, Beaucham C, Martinez KF, Dahm MM, Sparks C, Hodson LL, Geraci CL (2016) Refinement of the Nanoparticle Emission Assessment Technique into the Nanomaterial Exposure Assessment Technique (NEAT 2.0). J Occup Environ Hyg 13:708–717

    Article  Google Scholar 

  • Fierz M, Houle C, Steigmeier P, Burtscher H (2011) Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Sci Technol 45:1–10

    Article  CAS  Google Scholar 

  • Fierz M, Meier D, Steigmeier P, Burtscher H (2014) Aerosol measurement by induced currents. Aerosol Sci Technol 48:350–357

    Article  CAS  Google Scholar 

  • Hedmer M, Wierzbicka A, Li H, Albin M, Tinnerberg H, Broberg K (2017) Diesel exhaust exposure assessment among tunnel construction workers – correlations between nitrogen dioxide, respirable elemental carbon and particle exposure. Annals of Work Exposure and Health 61(5):539–553

    Article  CAS  Google Scholar 

  • Ilar A, Plato N, Lewné M, Pershagen G, Gustavsson P (2017) Occupational exposure to diesel motor exhaust and risk of lung cancer by histological subtype: a population-based case-control study in Swedish men. Eur J Epidemiol 32(8):711–719

    Article  CAS  Google Scholar 

  • Kaminski H, Kuhlbusch TAJ, Rath S, Götz U, Sprenger M, Wels D, Polloczek J, Bachmann V, Dziurowitz N, Kiesling HJ, Schwiegelshohn A, Monz C, Dahmann D, Asbach C (2013) Comparability of mobility particle sizers and diffusion chargers. J Aerosol Sci 57:156–178

    Article  CAS  Google Scholar 

  • Kittelson DB, Watts WF, Johnson JP (2006) On-road and laboratory evaluation of combustion aerosols – part 1: summary of diesel engine results. J Aerosol Sci 37:913–930

    Article  CAS  Google Scholar 

  • Liu Z, Swanson J, Kittelson B, Pui DYH (2012) Comparison of methods for online measurements of diesel particulate matter. Environ Sci Technol 46:6127–6133

    Article  CAS  Google Scholar 

  • Majewski WA, Jääskeläinen H (2016) Exhaust particulate matter. https://www.com/tech/dpm.php

  • Maricq MM, Xu N (2004) The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust. J Aerosol Sci 35:1251–1274

    Article  CAS  Google Scholar 

  • Maynard AD, Aitken RJ (2007) Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicology 1:26–41

    Article  CAS  Google Scholar 

  • Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614

    Article  CAS  Google Scholar 

  • Meier R, Clark K, Riediker M (2013) Comparative testing of a miniature diffusion size classifier to assess airborne ultrafine particles under field conditions. Aerosol Sci Technol 47:22–28

    Article  CAS  Google Scholar 

  • Methner M, Hodson L, Geraci C (2010) Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials – part A. J Occup Environ Hyg 7:127–132

    Article  CAS  Google Scholar 

  • Mills JB, Park JH, Peters TM (2013) Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols. J Occup Environ Hyg 10:250–258

    Article  CAS  Google Scholar 

  • Olfert JS, Symonds JPR, Collings N (2007) The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst. J Aerosol Sci 38:69–82

    Article  CAS  Google Scholar 

  • Ostraat ML, Thornburg JW, Malloy QGJ (2013) Measurement strategies of airborne nanomaterials. Environ Eng Sci 30:126–132

    Article  CAS  Google Scholar 

  • Park K, Cao F, Kittelson DB, Mc Murry PH (2003) Relationship between particle mass and mobility for diesel exhaust particles. Environ Sci Technol 37(3):577–583

    Article  CAS  Google Scholar 

  • Pope CA (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108(4):713–723

    Article  CAS  Google Scholar 

  • Rostedt A, Marjamäki M, Yli-Ojanperä J, Keskinen J, Janka K, Niemelä V, Ukkonen A (2009) Non-collecting electrical sensor for particle concentration measurement. Aerosol Air Qual Res 9:470–477

    Article  Google Scholar 

  • Todea AM, Beckmann S, Kaminski H, Asbach C (2015) Accuracy of electrical sensors measuring lung deposited surface area concentrations. J Aerosol Sci 89:96–109

    Article  CAS  Google Scholar 

  • Todea AM, Beckmann S, Kaminski H, Bard D, Bau S, Clavaguera S, Dahmann D, Dozol H, Dziurowitz N, Elihn K, Fierz M, Lidén G, Meyer-Plath A, Monz C, Neumann V, Pelzer J, Simonow BK, Thali P, Tuinman I, van der Vleuten A, Vroomen H, Asbach C (2017) Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment. Sci Total Environ 605-606:929–945

    Article  CAS  Google Scholar 

  • Wheatley AD, Sadhra P (2004) Occupational exposure to diesel exhaust fumes. Ann Occup Hyg 48(4):369–376

    CAS  Google Scholar 

  • Xu Y, Barregard L, Nielsen J, Gudmundsson A, Wierzbicka A, Axmon A, Jönsson BAG, Kåredal M, Albin M (2013) Effects of diesel exposure on lung function and inflammation biomarkers from airway and peripheral blood of healthy volunteers in a chamber study. Part Fibre Toxicol 10:60

    Article  Google Scholar 

  • Xue J, Li Y, Wang X, Durbin TD, Johnson KC, Karavalakis G, Asa-Awuku A, Villela M, Quiros D, Hu S, Huai T, Ayala A, Jung HS (2015) Comparison of vehicle exhaust particle size distributions measured by SMPS and EEPS during steady-state conditions. Aerosol Sci Technol 49:984–996

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bémer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bémer, D., Bau, S. Using a DiSCmini classifier for real-time determination of ultrafine particle mass concentration—application to diesel particle measurement. J Nanopart Res 21, 41 (2019). https://doi.org/10.1007/s11051-019-4483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4483-8

Keywords

Navigation