Skip to main content

Advertisement

Log in

Mg-Co-Al-LDH nanoparticles with attractive electrochemical performance for supercapacitor

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In order to strengthen the utilization of abundant magnesium resources in seawater, magnesium-based LDH nanoparticles (Mg-Co-Al-LDH nanoparticles) with attractive specific capacity and cycling stability were synthesized. The nanoparticles were prepared through coprecipitation of Mg(NO3)2, Co(NO3)2, and Al(NO3)3, and then characterized by SEM, FT-IR, and XRD. The electrochemical performances of Mg-Co-Al-LDH nanoparticles were evaluated and researched by galvanostatic charge-discharge test, cyclic voltammogram (CV), and electrochemical impedance spectroscopy (EIS). The results show that the nanoparticles own smooth surface and hexagonal layered structure, particle size is uniformly distributed between 350 and 450 nm. Electrochemical tests reveal that Mg-Co-Al-LDH nanoparticles display superior cycling stability at large current work conditions in charge-discharge tests, good capacitive performance at high scanning rate in CV tests and indicate a small internal resistance through EIS. The nanoparticles display an initial specific capacitance of 381.3 F g−1 at current density of 1 A g−1, with the value remaining 86.32% after 10,000 cycles. In addition, the prepared electrode performs an energy density of 13.09 Wh/kg and a power density of 149.49 W/kg. Besides, owing to the effective utilization of magnesium resources in seawater, Mg-Co-Al-LDH nanoparticles with attracted electrochemical performance are expected to achieve potential applications in supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abas N, Kalair A, Khan N (2015) Review of fossil fuels and future energy technologies. Futures 69:31–49

    Article  Google Scholar 

  • Alabadi A, Razzaque S, Dong Z, Wang W, Tan B (2016) Graphene oxide-polythiophene derivative hybrid nanosheet for enhancing performance of supercapacitor. J Power Sources 306:241–247

    Article  CAS  Google Scholar 

  • Besson P, Degboe J, Berge B et al (2013) Calcium, Na, K and Mg concentrations in seawater by inductively coupled plasma-atomic emission spectrometry: applications to IAPSO seawater reference material, hydrothermal fluids and synthetic seawater solutions. Geostand Geoanal Res 38:355–362

    Article  Google Scholar 

  • Birnhack L, Lahav O (2007) A new post-treatment process for attaining Ca2+, Mg2+, SO4 2− and alkalinity criteria in desalinated water. Water Res 41:3989–3997

    Article  CAS  Google Scholar 

  • Diallo MS, Kotte MR, Cho M (2013) Mining critical metals and elements from seawater: opportunities and challenges. Environ Sci Technol 49:9390–9399

    Article  Google Scholar 

  • Dubal DP, Sang HL, Kim JG et al (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22:3044–3052

    Article  CAS  Google Scholar 

  • Guo S, Zhang C, Peng H, Wang W, Liu T (2011) Structural characterization, thermal and mechanical properties of polyurethane/CoAl layered double hydroxide nanocomposites prepared via in situ polymerization. Compos Sci Technol 71:791–796

    Article  CAS  Google Scholar 

  • Han S, Chang X, Wu DQ et al (2017) Hierarchically porous cobalt aluminum layered double hydroxide flowers with enhanced capacitance performances. J Mater Sci 52:1–12

    Article  CAS  Google Scholar 

  • Hui P, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668

    Article  Google Scholar 

  • Lee B, Lee C, Liu T, Eom K, Chen Z, Noda S, Fuller TF, Jang HD, Lee SW (2016) Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage. Nanoscale 8:12330–12338

    Article  CAS  Google Scholar 

  • Lehmann O, Nir O, Kuflik M, Lahav O (2014) Recovery of high-purity magnesium solutions from RO brines by adsorption of Mg(OH)2(s) on Fe3O4 micro-particles and magnetic solids separation. Chem Eng J 235:37–45

    Article  CAS  Google Scholar 

  • Li C, Yang X, Zhang G (2015) Mesopore-dominant activated carbon aerogels with high surface area for electric double-layer capacitor application. Mater Lett 161:538–541

    Article  CAS  Google Scholar 

  • Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006a) Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128:4872–4880

    Article  CAS  Google Scholar 

  • Liu ZH, Yang X, Makita AY et al (2006b) Preparation of a polycation-intercalated layered manganese oxide nanocomposite by a delamination/reassembling process. J Mater Res 21:1718–1725

    Article  CAS  Google Scholar 

  • Lv Z, Zhong Q, Bu Y (2016) Controllable synthesis of Ni-Co nanosheets covered hollow box via altering the concentration of nitrate for high performance supercapacitor. Electrochim Acta 215:500–505

    Article  CAS  Google Scholar 

  • Ma KY, Liu F, Zhang MB, Zhang XB, Cheng JP (2017) Core/shell microrod arrays of NiO/Co-Fe layered double hydroxides deposited on nickel foam for energy storage and conversion. Electrochim Acta 225:425–434

    Article  CAS  Google Scholar 

  • Nagaraju G, Raju GS, Ko YH et al (2016) Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8:812–825

    Article  CAS  Google Scholar 

  • Naoi K, Ishimoto S, Miyamoto JI, Naoi W (2012) Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci 5:9363–9373

    Article  CAS  Google Scholar 

  • Narayanan R, Kumar PN, Deepa M, Srivastava AK (2015) Combining energy conversion and storage: a solar powered supercapacitor. Electrochim Acta 178:113–126

    Article  CAS  Google Scholar 

  • Ng CH, Lim HN, Hayase S, Harrison I, Pandikumar A, Huang NM (2015) Potential active materials for photo-supercapacitor: a review. J Power Sources 296:169–185

    Article  CAS  Google Scholar 

  • Patil UM, Kulkarni SB, Jamadade VS, Lokhande CD (2011) Chemically synthesized hydrous RuO2, thin films for supercapacitor application. J Alloys Compd 509:1677–1682

    Article  CAS  Google Scholar 

  • Quan W, Tang ZL, Wang ST, Hong Y, Zhang ZT (2016) Facile preparation of free-standing rGO paper-based Ni-Mn LDH/graphene superlattice composites as a pseudocapacitive electrode. Chem Commun 52:3694–3696

    Article  CAS  Google Scholar 

  • Quistjensen CA, Macedonio F, Drioli E (2016) Membrane crystallization for salts recovery from brine-an experimental and theoretical analysis. Desalin Water Treat 57:7593–7603

    Article  CAS  Google Scholar 

  • Ridjan I, Mathiesen BV, Connolly D, Duić N (2013) The feasibility of synthetic fuels in renewable energy systems. Energy 57:76–84

    Article  CAS  Google Scholar 

  • Sumboja A, Wang X, Yan J, Lee PS (2012) Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode. Electrochim Acta 65:190–195

    Article  CAS  Google Scholar 

  • Takanori T, Nobumitsu N, Hidenori O et al (2012) The effect of particle size and surface area on the ion conductivity of layered double hydroxide. Electrochem Commun 25:50–53

    Article  Google Scholar 

  • Tang SCN, Birnhack L, Nativ P, Lahav O (2017) Highly-selective separation of divalent ions from seawater and seawater RO retentate. Sep Purif Technol 175:460–468

    Article  CAS  Google Scholar 

  • Wan DJ, Liu HJ, Liu RP et al (2012) Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg-Al) hydrotalcite of different Mg/Al ratio. Chem Eng J 195:241–247

    Article  Google Scholar 

  • Wang B, Liu Q, Qian ZY, Zhang X, Wang J, Li Z, Yan H, Gao Z, Zhao F, Liu L (2014) Two steps in situ structure fabrication of Ni-Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. J Power Sources 246:747–753

    Article  CAS  Google Scholar 

  • Wang SL, Huang ZH, Li R, Zheng X, Lu F, He T (2016) Template-assisted synthesis of NiP@CoAl-LDH nanotube arrays with superior electrochemical performance for supercapacitors. Electrochim Acta 204:160–168

    Article  CAS  Google Scholar 

  • Wang Y, Yang W, Zhang S, Evans DG, Duan X (2005) Synthesis and electrochemical characterization of Co-Al layered double hydroxides. J Electrochem Soc 152:A2130–A2137

    Article  Google Scholar 

  • Xia KC, Wang GX, Zhang HL, Yu Y, Liu L, Chen A (2017) Synthesis and characterization of nitrogen-doped graphene hollow spheres as electrode material for supercapacitors. J Nanopart Res 19(7):254

    Article  Google Scholar 

  • Xie LJ, Hu ZA, Lv CX, Sun G, Wang J, Li Y, He H, Wang J, Li K (2012) CoxNi1-x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials. Electrochim Acta 78:205–211

    Article  CAS  Google Scholar 

  • Yu Z, Duong B, Abbitt D, Thomas J (2013) Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv Mater 25:3302–3306

    Article  CAS  Google Scholar 

  • Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  • Zhang YX, Yu S, Lou GB, Shen Y, Chen H, Shen Z, Zhao S, Zhang J, Chai S, Zou Q (2017) Review of macroporous materials as electrochemical supercapacitor electrodes. J Mater Sci 52:11201–11228

    Article  CAS  Google Scholar 

  • Zheng CH, Yao T, Xu TR, Wang HA, Huang PF, Yan Y, Fang DL (2016) Growth of ultrathin Ni, Co, Al layered double hydroxide on reduced graphene oxide and superb supercapacitive performance of the resulting composite. J Alloys Compd 678:93–101

    Article  CAS  Google Scholar 

Download references

Funding

This project is supported by National Natural Science Foundation of China (No. 21676180, 21076143), by the key technologies R & D program of Tianjin (15ZCZDSF00160), and by Tianjin Municipal Science and Technology Xinghai Program (No.KJXH2014-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wei, S. Mg-Co-Al-LDH nanoparticles with attractive electrochemical performance for supercapacitor. J Nanopart Res 21, 14 (2019). https://doi.org/10.1007/s11051-018-4452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4452-7

Keywords

Navigation