Skip to main content

Advertisement

Log in

Morphomechanical and organelle perturbation induced by silver nanoparticle exposure

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The unique physico-chemical properties of silver nanoparticles (AgNPs) make them a powerful tool in many fields, ranging from cosmetics, biomedicals, household products, and wound dressing. Several evidences suggest the strong toxicity of AgNPs both in vitro and in vivo, but few data are available to full understanding of their adverse effects on cellular components and cytoskeleton. In this work, we assessed the toxicity of citrate-capped AgNPs on cortical actin and organelles, namely mitochondria and lysosomes, on epithelial breast cancer cells (MCF-7). The impact of AgNPs on cells was firstly evaluated in term of viability, oxidative stress, mitochondria membrane potential alteration, and apoptosis activation. Afterwards, we carefully estimated the qualitative and quantitative morphological alterations of cortical F-actin and organelles by confocal microscopy and specific software tools, coupled with a biomechanical analysis by atomic force microscopy (AFM). This multidisciplinary approach, which combines the standard biological assays with systematic morphometric and biomechanical analysis on cells, permits to understand at different levels the intracellular response elicited by AgNPs in order to provide new scenarios in toxicity assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akter M, Akter M, Sikder T, Rahman M, Ullah AKMA, Fatima K, Hossain B, Banik S, Hosokawa T, Saito T, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16

    Article  CAS  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  • Atilgan E, Wirtz D, Sun S (2005) Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells. Biophys J 89(5):3589–3602

    Article  CAS  Google Scholar 

  • Borm fPJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3(11):11

    Article  Google Scholar 

  • Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:32

    Article  CAS  Google Scholar 

  • Bressan E, Ferroni L, Gardin C, Rigo C, Stocchero M, Vindigni V, Cairns W, Zavan B (2013) Silver nanoparticles and mitochondrial interaction. Int J Dent 2013:312747

    Article  Google Scholar 

  • Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria , abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20(23):4515–4529

    Article  CAS  Google Scholar 

  • Cascione M, De Matteis V, Toma CC, Pellegrino P, Leporatti S, Rinaldi R (2017) Morphomechanical and structural changes induced by ROCK inhibitor in breast cancer cells. Exp Cell Res 360(2):15

    Article  Google Scholar 

  • Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66:8319–8326

    Article  CAS  Google Scholar 

  • Dagda RK, Cherra SJ, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284(20):13843–13855

    Article  CAS  Google Scholar 

  • De Matteis V, Rinaldi R (2018) Toxicity assessment in the nanoparticle Era. Adv Exp Med Biol 1048:1–19

    Article  Google Scholar 

  • De Matteis V, Malvindi MA, Galeone A, Brunetti V, De Luca E, Kote S, Kshirsagar P, Sabella S, Bardi G, Pompa PP (2015) Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag + ion release in the cytosol. Nanomedicine 11(3):731–739

    Article  Google Scholar 

  • De Matteis V, Rizzello L, Di Bello MP, Rinaldi R (2017) One-step synthesis, toxicity assessment and degradation in tumoral pH environment of SiO2@Ag core/shell nanoparticles. J Nanopart Res 19(6):14

    Article  Google Scholar 

  • De Matteis V, Cascione MF, Toma CC, Leporatti S (2018) Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials 8(5(319)):1–23

    Google Scholar 

  • Farrera C, Fadeel B (2015) It takes two to tango: understanding the interactions between engineered nanomaterials and the immune system. Eur J Pharm Biopharm 95(Pt A):3–12

    Article  CAS  Google Scholar 

  • Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  CAS  Google Scholar 

  • Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA, Gómez-Flores RA, Zapata-Benavides P, Castillo-Tello P, Alcocer-González JM, Miranda-Hernández DF, Tamez-Guerra RS, Rodríguez-Padilla C (2010) Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp Clin Cancer Res 29:148

    Article  Google Scholar 

  • Ghosh M, Carlsson F, Laskar A, Yuan XM, Li W (2011) Lysosomal membrane permeabilization causes oxidative stress and ferritin induction in macrophages. FEBS Lett 585(4):623–629

    Article  CAS  Google Scholar 

  • González-Durruthy M, Monserrat JM, Alberici LC, Naal Z, Curtie C, González-Díaz H (2015) Mitoprotective activity of oxidized carbon nanotubes against mitochondrial swelling induced in multiple experimental conditions and predictions with new expected-value perturbation theory. RSC Adv 125

  • Juarez-Moreno K, Gonzalez EB, Girón-Vazquez N, Chávez-Santoscoy RA, Mota-Morales JD, Perez-Mozqueda LL, Garcia-Garcia MR, Pestryakov A, Bogdanchikova N (2017) Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Hum Exp Toxicol 36(9):931–948

    Article  CAS  Google Scholar 

  • Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angewandte Chem 50(6):1260–1278

    Article  CAS  Google Scholar 

  • Luther EM, Koehler Y, Diendorf J, Epple M, Dringen R (2011) Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology 22(37):375101

    Article  Google Scholar 

  • Luzio JP, Hackmann Y, Dieckmann NM, Griffiths GM (2014) The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Biol 6(9):a016840

    Article  Google Scholar 

  • McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22(1):116–127

    Article  CAS  Google Scholar 

  • Mittal S, Pandey AK (2014) Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed Res Int 891934, 14

  • Miyayama T, Fujiki K, Matsuoka M (2018) Toxicology in vitro silver nanoparticles induce lysosomal-autophagic defects and decreased expression of transcription factor EB in A549 human lung adenocarcinoma cells. Toxicol in Vitro 46148–154

  • Moeendarbary E, Harris AR (2014) Cell mechanics: principles, practices, and prospects. Wiley Interdiscip Rev Syst Biol Med 6(5):371–388

    Article  Google Scholar 

  • Nguyen KC, Rippstein P, Tayabali AF, Willmore WG (2015) Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes. Toxicol Sci 146(1):31–42

    Article  CAS  Google Scholar 

  • Oberdörster, G. Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H; ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  Google Scholar 

  • Onodera A, Nishiumi F, Kakiguchi K, Tanaka A, Tanabe N, Honma A, Yayama K, Yoshioka Y, Nakahira K, Yonemura S, Yanagihara I, Tsutsumi Y, Kawai Y (2015) Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size. Toxicol Rep 2:574–579

    Article  CAS  Google Scholar 

  • Pi J, Yang F, Jin H, Huang X, Liu R, Yang P, Cai J (2013) Selenium nanoparticles induced membrane bio-mechanical property changes in MCF-7 cells by disturbing membrane molecules and F-actin. Bioorg Med Chem Lett 23(23):6296–6303

    Article  CAS  Google Scholar 

  • Septiadi D, Crippa F, Moore TL, Rothen-Rutishauser B, Petri-Fink A (2018) Nanoparticle – cell interaction: a cell mechanics perspective. Adv Mater 30(19):e1704463

    Article  Google Scholar 

  • Shinto H, Ohta Y, Fukasawa T (2012) Adhesion of melanoma cells to the microsphere surface is reduced by exposure to nanoparticles. Adv Powder Techol 23(5):693–699

    Article  CAS  Google Scholar 

  • Shvedova AA, Kagan VE, Fadeel B (2010) Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol 50:63–88

    Article  CAS  Google Scholar 

  • Swanner J, Mims J, Carroll DL, Akman SA, Furdui CM, Torti SV, Singh RN (2015) Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells. Int J Nanomedicine 10:3937–3953

    CAS  Google Scholar 

  • Taulet N, Delorme-Walker VD, Der Mardirossian C (2012) Reactive oxygen species regulate protrusion efficiency by controlling actin dynamics. PLoS One 7(8):e41342

    Article  CAS  Google Scholar 

  • Teodoro JS, Silva R, Varela AT, Duarte FV, Rolo AP, Hussain S, Palmeira CM (2016) Low-dose, subchronic exposure to silver nanoparticles causes mitochondrial alterations in Sprague–Dawley rats. Nanomedicine 11(11):1359–1375

    Article  CAS  Google Scholar 

  • Tsuji T, Ibaragi S, Hu G (2009) Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69(18):7135–7139

    Article  CAS  Google Scholar 

  • Van der Zande M, Undas AK, Kramer E, Monopoli MP, Peters RJ, Garry D, Antunes Fernandes EC, Hendriksen PJ, Marvin HJ, Peijnenburg AA, Bouwmeester H (2016) Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action based on highly similar mechanisms of action. Nanotoxicology 10(10):1431–1441

    Article  Google Scholar 

  • Walczyk D, Baldelli-Bombelli F, Campbell A, Lynch I, Dawson KA, Bombelli FB, Monopoli MP (2010) What the cell “ sees ” in bionanoscience. J Am Chem Soc 132(16):5761–5768

    Article  CAS  Google Scholar 

  • Xu F, Piett C, Farkas S, Qazzaz M, Syed NI (2013) Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol Brain 6(29):1–15

    Google Scholar 

  • Yang EJ, Kim S, Kim JS, Choi IH (2012) Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. 2012. Biomaterials 33(28):6858–6867

    Article  CAS  Google Scholar 

  • Yu KN, Chang SH, Park SJ, Lim J, Lee J, Yoon TJ, Kim JS, Cho MH (2015) Titanium dioxide nanoparticles induce endoplasmic reticulum stress-mediated autophagic cell death via mitochondria-associated endoplasmic reticulum membrane disruption in normal lung cells. PLoS One 10(6):e0131208

    Article  Google Scholar 

  • Zhang XF, Shen W, Gurunathan S (2016) Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci 17(10):1–26

    Google Scholar 

  • Zielinska E, Zauszkiewicz-Pawlak A, Wojcik M, Inkielewicz-Stepniak (2017) Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget 9(4):4675–4697

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria De Matteis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Matteis, V., Cascione, M., Toma, C.C. et al. Morphomechanical and organelle perturbation induced by silver nanoparticle exposure. J Nanopart Res 20, 273 (2018). https://doi.org/10.1007/s11051-018-4383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4383-3

Keywords

Navigation