Skip to main content
Log in

Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength?

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study theoretically examined colloid detachment from primary minima with ionic strength (IS) reduction on heterogeneous collector surfaces. The chemically and physically heterogeneous collector surfaces were modeled as a planar surface carrying nanoscale patches of different zeta potentials and nanoscale pillars/hemispheroids, respectively. The surface element integration technique was used to calculate interaction energies between colloid and collector surfaces. Two boundary conditions for the double-layer interaction energy were considered, namely constant surface potential (CSP), and linear superposition approximation (LSA). In contrast to prevailing opinions in the literature, our results show that colloids attached on the chemically heterogeneous surface cannot be detached by IS reduction under CSP condition due to an increase of the adhesive force/torque with decreasing IS. Detachment from chemically heterogeneous surfaces by IS reduction can occur under LSA condition only when the flow velocity is very high. In contrast, the presence of nanoscale physical heterogeneity can cause colloid detachment from primary minima by IS reduction under both CSP and LSA conditions at flow velocities commonly used in experimental studies because of a significant reduction in the adhesive forces/torques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adamczyk Z, Weronski P (1999) Application of the DLVO theory for particle deposition problems. Adv Colloid Interf Sci 83:137–226

    Article  Google Scholar 

  • Bendersky M, Davis JM (2011) DLVO interaction of colloidal particles with topographically and chemically heterogeneous surfaces. J Colloid Interface Sci 353:87–87

    Article  Google Scholar 

  • Bendersky M, Santore MM, Davis JM (2015) Statistically-based DLVO approach to the dynamic interaction of colloidal microparticles with topographically and chemically heterogeneous collectors. J Colloid Interface Sci 449:443–451

    Article  Google Scholar 

  • Bergendahl J, Grasso D (2000) Predicting of colloid detachment in a model porous media: hydrodynamics. Chem Eng Sci 555:1523–1532

    Article  Google Scholar 

  • Bergendahl J, Grasso D (2003) Mechanistic basis for particle detachment from granular media. Environ Sci Technol 37:2317–2322

    Article  Google Scholar 

  • Bhattacharjee S, Elimelech M (1997) Surface element integration: a novel technique for evaluation of DLVO interaction between a particle and a flat plate. J Colloid Interface Sci 193:273–285

    Article  Google Scholar 

  • Bhattacharjee S, Ko C–H, Elimelech M (1998) DLVO interaction between rough surfaces. Langmuir 14:2265–2275

    Article  Google Scholar 

  • Bradford SA, Kim H (2012) Causes and implications of colloid and microorganism retention hysteresis. J Contam Hydrol 138-139:83–92

    Article  Google Scholar 

  • Bradford SA, Torkzaban S (2012) Colloid adhesive parameters for chemically heterogeneous porous media. Langmuir 28:13643–13651

    Article  Google Scholar 

  • Bradford SA, Torkzaban S (2015) Determining parameters and mechanisms of colloid retention and release in porous media. Langmuir 31:12096–12105

    Article  Google Scholar 

  • Bradford SA, Torkzaban S, Leij F, Simunek J (2015) Equilibrium and kinetic models for colloid release under transient solution chemistry conditions. J Contam Hydrol 181:141–152

    Article  Google Scholar 

  • Bradford SA, Kim H, Shen C, Sasidharan S, Shang J (2017) Contributions of nanoscale roughness to anomalous colloid retention and stability behavior. Langmuir 33:10094–10105

    Article  Google Scholar 

  • Burdick GM, Bernan NS, Beaudoin SP (2005) Hydrodynamic particle removal from surfaces. Thin Solid Films 488:116–123

    Article  Google Scholar 

  • Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22:10994–11001

    Article  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211-212:112–125

    Article  Google Scholar 

  • Darbha GK, Fischer C, Michler A, Luetzenkirchen J, Schafer T, Heberling F, Schild D (2012) Deposition of latex colloids at rough mineral surfaces: an analogue study using nanopatterned surfaces. Langmuir 28:6606–6617

    Article  Google Scholar 

  • Duffadar RD, Davis JM (2007) Interaction of micrometer-scale particles with nanotextured surfaces in shear flow. J Colloid Interface Sci 308:20–29

    Article  Google Scholar 

  • Duffadar RD, Davis JM (2008) Dynamic adhesion behavior of micrometer-scale particles flowing over patchy surfaces with nanoscale electrostatic heterogeneity. J Colloid Interface Sci 326:18–27

    Article  Google Scholar 

  • Elimelech M, O’Melia CR (1990a) Kinetics of deposition of colloidal particles in porous media. Environ Sci Technol 24:1528–1536

    Article  Google Scholar 

  • Elimelech M, O’Melia CR (1990b) Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. Langmuir 6:1153–1163

    Article  Google Scholar 

  • Fang B, Jiang Y, Rotello VM, Nusslein K, Santore MM (2014) Easy come easy go: surfaces containing immobilized nanoparticles or isolated polycation chains facilitate removal of captured Staphylococcus aureus by retarding bacterial bond maturation. ACS Nano 8:1180–1190

    Article  Google Scholar 

  • Franchi A, O’Melia CR (2003) Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environ Sci Technol 37:1122–1129

    Article  Google Scholar 

  • Fuerstenau DW, Pradip (2005) Zeta potentials in the flotation of oxide and silicate minerals. Adv Colloid Interf Sci 114-115:9–26

    Article  Google Scholar 

  • Goldman AJ, Cox RG, Brenner H (1967) Slow viscous motion of a sphere parallel to a plane wall—II Couette flow. Chem Eng Sci 22:653–660

    Article  Google Scholar 

  • Gregory J (1975) Interaction of unequal double layers at constant charge. J Colloid Interface Sci 51:44–51

    Article  Google Scholar 

  • Hahn MW, O’Melia CR (2004) Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Environ Sci Technol 38:210–220

    Article  Google Scholar 

  • Hahn MW, Abadzic D, O’Melia CR (2004) Aquasols: on the role of secondary minima. Environ Sci Technol 38:5915–5924

    Article  Google Scholar 

  • Hamaker HC (1937) The London—van der Waals attraction between spherical particles. Physica 4:1058–1072

    Article  Google Scholar 

  • Han P, Wang X, Cai L, Tong M, Kim H (2014) Transport and retention behaviors of titanium dioxide nanoparticles in iron oxide-coated quartz sand: effects of pH, ionic strength, and humic acid. Colloids Surf A Physicochem Eng Asp 454:119–127

    Article  Google Scholar 

  • Hogg R, Healy TW, Fuerstenau DW (1966) Mutual coagulation of colloidal dispersions. Trans Faraday Soc 62:1638–1651

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  • Jin C, Zhao W, Normani SD, Zhao P, Emelko MB (2017) Synergies of media surface roughness and ionic strength on particle deposition during filtration. Water Res 114:286–295

    Article  Google Scholar 

  • Johnson RL, Nurmi JT, O’Brien Johnson GS, Fan D, O’Brien Johnson RL, Shi Z, Salter-Blanc AJ, Tratnyek PG, Lowry GV (2013) Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environ Sci Technol 47:1573–1580

    Article  Google Scholar 

  • Kemps JAL, Bhattaharjee S (2005) Interactions between a solid spherical particle and a chemically heterogeneous planar substrate. Langmuir 21:11710–11721

    Article  Google Scholar 

  • Kim H–J, Phenrat T, Tilton RD, Lowry GV (2012) Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J Colloid Interface Sci 370:1–10

    Article  Google Scholar 

  • Kirschling TL, Gregory KB, Minkley EG, Lowry GV, Tilton RD (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44:3474–3480

    Article  Google Scholar 

  • Li J, Ghoshal S (2016) Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow. Chemosphere 144:1398–1407

    Article  Google Scholar 

  • Li X, Zhang P, Lin CL, Johnson WP (2005) Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions. Environ Sci Technol 39:4012–4020

    Article  Google Scholar 

  • Li J, Xie X, Ghoshal S (2015) Correlation equation for predicting the single-collector contact efficiency of colloids in a horizontal flow. Langmuir 31:7210–7219

    Article  Google Scholar 

  • Li T, Jin Y, Huang Y, Li B, Shen C (2017) Observed dependence of colloid detachment on the concentration of initially attached colloids and collector surface heterogeneity in porous media. Environ Sci Technol 51:2811–2820

    Article  Google Scholar 

  • Lin S, Wiesner MR (2010) Exact analytical expressions for the potential of electrical double layer interactions for a sphere-plate system. Langmuir 26:16638–16641

    Article  Google Scholar 

  • Long W, Hilpert M (2009) A correlation for the collector efficiency of Brownian particles in clean-bed filtration in sphere packing by a Lattice-Boltzmann method. Environ Sci Technol 43:4419–4424

    Article  Google Scholar 

  • Ma H, Pazmino E, Johnson WP (2011) Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers. Langmuir 27:14982–14994

    Article  Google Scholar 

  • Ma J, Guo H, Lei M, Wan X, Zhang H, Feng X, Wei R, Tian L, Han X (2016) Blocking effect of colloids on arsenate adsorption during co-tranpsort through saturated sand columns. Environ Pollut 213:638–647

    Article  Google Scholar 

  • Martines E, Csaderova L, Morgan H, Curtis ASG, Riehle MO (2008) DLVO interaction energy between a sphere and a nano-patterned plate. Colloids Surf A Physicochem Eng Asp 318:45–52

    Article  Google Scholar 

  • Masciopinto C, Visino F (2017) Strong release of viruses in fracture flow in response to a perturbation in ionic strength: filtration/retention tests and modeling. Water Res 126:240–251

    Article  Google Scholar 

  • Mesticou Z, Kacem M, Dubujet P (2014) Influence of ionic strength and flow rate on silt particle deposition and release in saturated porous media: experiment and modeling. Transp Porous Media 103:1–24

    Article  Google Scholar 

  • Molnar IL, Johnson WP, Gerhard JI, Willson CS, O’Carroll DM (2015) Predicting colloid transport through saturated porous media: a critical review. Water Resour Res 51:6804–6845

    Article  Google Scholar 

  • Ngwenya B, Curry P, Kapetas L (2015) Transport and viability of Escherichia coli cells in clean and iron oxide coated sand following coating with silver nanoparticles. J Contam Hydrol 179:35–46

    Article  Google Scholar 

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  Google Scholar 

  • O’Neill ME (1968) A sphere in contact with a plane wall in a slow linear shear flow. Chem Eng Sci 23:1293–1298

    Article  Google Scholar 

  • Oliveira R (1997) Understanding adhesion: a means for preventing fouling. Exp Thermal Fluid Sci 14:316–322

    Article  Google Scholar 

  • Pazmino E, Trauscht J, Johnson WP (2014a) Release of colloids from primary minimum contact under unfavorable conditions by perturbations in ionic strength and flow rate. Environ Sci Technol 48:9227–9235

    Article  Google Scholar 

  • Pazmino E, Trauscht J, Dame B, Johnson WP (2014b) Power law size-distributed heterogeneity explains colloid retention on soda lime glass in the presence of energy barrier. Langmuir 30:5412–5421

    Article  Google Scholar 

  • Pham NH, Harwell JH, Resasco DE, Papavassiliou DV, Chen C, Shiau B (2016) Transport and deposition kinetics of polymer-coated multiwalled carbon nanotubes in packed beds. AICHE J 62:3774–3783

    Article  Google Scholar 

  • Qi Z, Zhang L, Wang F, Hou L, Chen W (2014) Factors controlling transport of graphene oxide nanoparticles in saturated sand columns. Environ Toxicol Chem 33:998–1004

    Article  Google Scholar 

  • Redman JA, Walker SL, Elimelech M (2004) Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ Sci Technol 38:1777–1785

    Article  Google Scholar 

  • Roy SB, Dzombak DA (1996) Na+-Ca2+ exchange effects in the detachment of latex colloids deposited in glass bead porous media. Colloids Surf A Physicochem Eng Asp 119:133–139

    Article  Google Scholar 

  • Ruckenstein E, Prieve DC (1976) Adsorption and desorption of particles and their chromatographic separation. AICHE J 22:276–283

    Article  Google Scholar 

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloids Surf A Physicochem Eng Asp 107:1–56

    Article  Google Scholar 

  • Ryan JN, Gschwend PM (1994) Effect of ionic strength and flow rate on colloid release: relating kinetics to intersurface potential energy. J Colloid Interface Sci 164:21–34

    Article  Google Scholar 

  • Schijven JF, Hassanizadeh SM (2000) Removal of viruses by soil passage: overview of modeling, processes, and parameters. Crit Rev Environ Sci Technol 30:49–127

    Article  Google Scholar 

  • Shen C, Li B, Huang Y, Jin Y (2007) Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions. Environ Sci Technol 41:6976–6982

    Article  Google Scholar 

  • Shen C, Li B, Wang C, Huang Y, Jin Y (2011) Surface roughness effect on deposition of nano- and micro-sized colloids in saturated columns at different solution ionic strengths. Vadose Zone J 10:1071–1081

    Article  Google Scholar 

  • Shen C, Wang L–P, Li B, Huang Y, Jin Y (2012) Role of surface roughness in chemical detachment of colloids deposited at primary energy minima. Vadose Zone J. https://doi.org/10.2136/vzj2011.0057

  • Shen C, Lazouskaya V, Zhang H, Li B, Jin Y, Huang Y (2013) Influence of surface chemical heterogeneity on attachment and detachment of microparticles. Colloids Surf A Physicochem Eng Asp 433:14–29

    Article  Google Scholar 

  • Shen C, Wu L, Zhang S, Ye H, Li B, Huang Y (2014a) Heteroaggregation of microparticles with nanoparticles changes the chemical reversibility of the mciroparticles’ attachment to planar surfaces. J Colloid Interface Sci 421:103–113

    Article  Google Scholar 

  • Shen C, Jin Y, Li B, Zheng W, Huang Y (2014b) Facilitated attachment of nanoparticles at primary minima by nanoscale roughness in susceptible to hydrodynamic drag under unfavorable chemical conditions. Sci Total Environ 466-467:1094–1102

    Article  Google Scholar 

  • Shen C, Zhang M, Zhang S, Wang Z, Zhang H, Li B, Huang Y (2015) Influence of surface heterogeneities on reversibility of fullerene (nC60) nanoparticle attachment in saturated porous media. J Hazard Mater 290:60–68

    Article  Google Scholar 

  • Sun Y, Gao B, Bradford SA, Wu L, Chen H, Shi X, Wu J (2015) Transport, retention, and size perturbation of graphene oxide in saturated porous media: effects of input concentration and grain size. Water Res 68:24–33

    Article  Google Scholar 

  • Swanton SW (1995) Modelling colloid transport in groundwater; the prediction of colloid stability and retention behaviour. Adv Colloid Interf Sci 54:129–208

    Article  Google Scholar 

  • Syngouna VI, Chrysikopoulos CV (2016a) Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: gravity effects. Sci Total Environ 545-546:210–218

    Article  Google Scholar 

  • Syngouna VI, Chrysikopoulos CV (2016b) Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads. J Colloid Interface Sci 440:140–150

    Article  Google Scholar 

  • Torkzaban S, Bradford SA (2016) Critical role of surface roughness on colloid retention and release in porous media. Water Res 88:274–284

    Article  Google Scholar 

  • Torkzaban S, Bradford SA, Walker SL (2007) Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir 23:9652–9660

    Article  Google Scholar 

  • Torkzaban S, Kim HN, Simunek J, Bradford SA (2010) Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry. Environ Sci Technol 44:1662–1669

    Article  Google Scholar 

  • Torkzaban S, Bradford SA, Wan J, Tokunaga T, Masoudih A (2013) Release of quantum dot nanparticles in porous media: role of cation exchange and aging time. Environ Sci Technol 47:11528–11536

    Article  Google Scholar 

  • Torkzaban S, Bradford SA, Vanderzalm JL, Patterson BM, Harris B, Prommer H (2015) Colloid release and clogging in porous media: effects of solution ionic strength and flow velocity. J Contam Hydrol 181:141–152

    Article  Google Scholar 

  • Tosco T, Tiraferri A, Sethi R (2009) Ionic strength dependent transport of microparticles in saturated porous media: modeling mobilization and immobilization phenomena under transient chemical conditions. Environ Sci Technol 43:4425–4431

    Article  Google Scholar 

  • Trauscht J, Pazmino E, Johnson WP (2015) Prediction of nanoparticle and colloid attachment on unfavorable mineral surfaces using representative discrete heterogeneity. Langmuir 31:9366–9378

    Article  Google Scholar 

  • Tufenkji N, Elimelech M (2004) Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ Sci Technol 38:529–536

    Article  Google Scholar 

  • Tufenkji N, Elimelech M (2005) Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. Langmuir 21:841–852

    Article  Google Scholar 

  • Walz JY (1998) The effect of surface heterogeneities on colloidal forces. Adv Colloid Interf Sci 74:119–168

    Article  Google Scholar 

  • Wang D, Shen C, Jin Y, Su C, Chu L, Zhou D (2017) Role of solution chemistry in the retention and release of grapheme oxide nanomaterials in uncoated and iron oxide-coated sand. Sci Total Environ 579:776–785

    Article  Google Scholar 

  • Wen Y, Guo X, Kalasin S, Santore MM (2014) Capture of soft particles on electrostatically heterogeneous collectors: brushy particles. Langmuir 30:2019–2027

    Article  Google Scholar 

  • Yi P, Chen KL (2013) Influence of solution chemistry on the release of multiwalled carbon nanotubes from silica surfaces. Environ Sci Technol 47:12211–12218

    Article  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  Google Scholar 

  • Zhang T, Murphy M, Yu H, Huh C, Bryant SL (2016) Mechanistic model for nanoparticle retention in porous media. Transp Porous Media 115:387–406

    Article  Google Scholar 

  • Zhou J, Liu D, Zhang W, Chen X, Huan Y, Yu X (2017) Colloid characterization and in situ release in shallow groundwater under different hydrogeology conditions. Environ Sci Pollut Res 24:14445–14454

    Article  Google Scholar 

Download references

Funding

This study is financially supported and provided by the National Natural Science Foundation of China (41671222), Beijing Nova Program (Z161100004916116), and National Key Research and Development Program of China (2017YFD0800301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanfang Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 1360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Bradford, S.A., Li, T. et al. Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength?. J Nanopart Res 20, 165 (2018). https://doi.org/10.1007/s11051-018-4265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4265-8

Keywords

Navigation