Skip to main content
Log in

Electrostatic interactions of poly (methyl methacrylate) colloids: deposition patterns of evaporating non-aqueous colloidal droplets

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We generate controllable micrometer-range electrostatic interactions in a suspension by using a charge control additive: an anionic surfactant, dioctyl sodium sulfosuccinate (AOT), and an organic salt, tetradodecylammonium tetrakis (3,5-bis (trifluoromethyl)phenyl)borate (TDAT) in non-aqueous solvents. Both systems function via different mechanisms of altering the electrostatic interaction between poly (methyl methacrylate) (PMMA) colloids. For the AOT system, the particle surface charge is modified by the adsorption of charged and neutral AOT micelles on the surface, hence affecting the interactions between particles. The measured scaled surface potential is independent on the AOT concentration, so that the AOT-PMMA system approximates the constant surface potential (CSP) limit. For the electrolytic TDAT non-aqueous system, the screening length of the solution was altered due to the presence of free ions in the solution. This is confirmed by the conductivity and theoretical Debye length λD values. However, from the force measurement using the blinking optical tweezers (BOTs), it was revealed that the measured screening length κ−1, and the particle effective charge Zeff shows a non-monotonic dependence on the TDAT concentration. The deviation between these values revealed that at high TDAT concentrations, the classical DLVO theory-Debye-Hückel limit is no longer valid for the system. We relate the formation of clusters and aggregates formed in the bulk system with the deposition patterns of a colloidal droplet on a hydrophobically coated glass substrate. The drying of droplets containing monodisperse PMMA particles was studied by confocal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Israelachvili, JN (2011) Intermolecular and surface forces. Academic press

  2. Smith GN, Eastoe J (2013) Controlling colloid charge in nonpolar liquids with surfactants. Phys Chem Chem Phys 15(2):424–439

    Article  CAS  PubMed  Google Scholar 

  3. Rana S, Bhattacharjee J, Barick KC, Verma G, Hassan PA, Yakhmi JV (2017) Interfacial engineering of nanoparticles for cancer therapeutics. Nanostructures for Cancer Therapy:177–209

  4. Hussain G, Robinson A, Bartlett P (2013) Charge generation in low-polarity solvents: poly (ionic liquid)-functionalized particles. Langmuir 29(13):4204–4213

    Article  CAS  PubMed  Google Scholar 

  5. Smith GN, Grillo I, Rogers SE, Eastoe J (2015) Surfactants with colloids: adsorption or absorption? J Colloid Interf Sci 449:205–214

    Article  CAS  Google Scholar 

  6. Roberts GS, Sanchez R, Kemp R, Wood T, Bartlett P (2008) Electrostatic charging of nonpolar colloids by reverse micelles. Langmuir 24(13):6530–6541

    Article  CAS  PubMed  Google Scholar 

  7. Hallett JE, Gillespie DA, Richardson RM, Bartlett P (2018) Charge regulation of nonpolar colloids. Soft Matter 14(3):331–343

    Article  CAS  PubMed  Google Scholar 

  8. Kanduč M, Trulsson M, Naji A, Burak Y, Forsman J, Podgornik R (2008) Weak-and strong-coupling electrostatic interactions between asymmetrically charged planar surfaces. Phys Rev E 78(6):061105

    Article  CAS  Google Scholar 

  9. Dutta S, Jho YS (2016) Strong-coupling electrostatic theory of polymer counterions close to planar charges. Phys Rev E 93(1):012504

    Article  PubMed  CAS  Google Scholar 

  10. Roller EM, Argyropoulos C, Högele A, Liedl T, Pilo-Pais M (2016) Plasmon–exciton coupling using. DNA templates Nano Letters 16(9):5962–5966

    Article  CAS  PubMed  Google Scholar 

  11. Bohinc K, Bossa GV, May S (2017) Incorporation of ion and solvent structure into mean-field modeling of the electric double layer. Adv Colloid Interfac 249:220–233

    Article  CAS  Google Scholar 

  12. Adžić N, Podgornik R (2015) Charge regulation in ionic solutions: thermal fluctuations and Kirkwood-Schumaker interactions. Physl Rev E 91(2):022715

    Article  CAS  Google Scholar 

  13. Lund M, Jönsson B (2005) On the charge regulation of proteins. Biochemistry 44(15):5722–5727

    Article  CAS  PubMed  Google Scholar 

  14. Lund M, Jönsson B (2013) Charge regulation in biomolecular solution. Q Rev Biophys 46(03):265–281

    Article  CAS  PubMed  Google Scholar 

  15. He P, Derby B (2017) Controlling coffee ring formation during drying of inkjet printed 2D inks. Adv Mater Interfaces 4(22):1700944

    Article  CAS  Google Scholar 

  16. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829

    Article  CAS  Google Scholar 

  17. Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110(14):7090–7094

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Zhao Z, Lam ML, Liu W, Yeung PP, Chieng CC, Chen TH (2015) Hybridization-induced suppression of coffee ring effect for nucleic acid detection. Sensors Actuat B-Chem 206:56–64

    Article  CAS  Google Scholar 

  19. Eral HB, Oh JM (2013) Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym Sci 291(2):247–260

    Article  CAS  Google Scholar 

  20. Yunker PJ, Still T, Lohr MA, Yodh AG (2011) Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360):308–311

    Article  CAS  PubMed  Google Scholar 

  21. Bhardwaj R, Fang X, Somasundaran P, Attinger D (2010) Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram. Langmuir 26(11):7833–7842

    Article  CAS  PubMed  Google Scholar 

  22. Lebedev-Stepanov PV, Kadushnikov RM, Molchanov SP, Ivanov AA, Mitrokhin VP, Vlasov KO, Alfimov MV (2013) Self-assembly of nanoparticles in the microvolume of colloidal solution: physics, modeling, and experiment. Nanotechnologies in Russia 8(3–4):137–162

    Article  Google Scholar 

  23. Anyfantakis M, Baigl D (2015) Manipulating the coffee-ring effect: interactions at work. Chem Phys Chem 16(13):2726–2734

    Article  CAS  PubMed  Google Scholar 

  24. Shafiq MD, Waggett F, Norris E, Bartlett P (2019) Droplet evaporation: Colloidal interactions vs. evaporation kinetics. Coll Surf A 578:123555

    Article  CAS  Google Scholar 

  25. Antl L, Goodwin JW, Hill RD, Ottewill RH, Owens SM, Papworth S, Waters JA (1986) The preparation of poly (methyl methacrylate) latices in non-aqueous media. Colloids and Surfaces 17(1):67–78

    Article  CAS  Google Scholar 

  26. Waggett F, Shafiq MD, Bartlett P (2018) Failure of Debye-Hückel screening in low-charge colloidal suspensions. Colloids and Interfaces 2(4):51

    Article  CAS  Google Scholar 

  27. Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier

  28. Eales AD, Routh AF, Dartnell N, Simon G (2015) Evaporation of pinned droplets containing polymer–an examination of the important groups controlling final shape. AICHE J 61(5):1759–1767

    Article  CAS  Google Scholar 

  29. Cao H, Lu N, Ding B, Qi M (2013) Regulation of charged reverse micelles on particle charging in nonpolar media. Phys Chem Chem Phys 15(29):12227–12234

    Article  CAS  PubMed  Google Scholar 

  30. Cason JP, Miller ME, Thompson JB, Roberts CB (2001) Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems. J Phys Chem B 105(12):2297–2302

    Article  CAS  Google Scholar 

  31. Mitsionis AI, Vaimakis TC (2012) Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods. Chem Phys Lett 547:110–113

    Article  CAS  Google Scholar 

  32. Farrokhbin M, Stojimirović B, Galli M, Aminian MK, Hallez Y, Trefalt G (2019) Surfactant mediated particle aggregation in nonpolar solvents. Phys Chem Chem Phys 1(3):18866–18876

    Article  Google Scholar 

  33. Hasegawa M, Sugimura T, Kuraishi K, Shindo Y, Kitahara A (1992) Microviscosity in AOT reversed micellar core determined with a viscosity-sensitive fluorescence probe. Chem Lett 21(7):1373–1376

    Article  Google Scholar 

  34. Garrett PR (2016) The science of defoaming: theory, experiment and applications Vol. 155 CRC Press

  35. O'Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 74:1607–1626

    Article  CAS  Google Scholar 

  36. Man X, Doi M (2016) Ring to mountain transition in deposition pattern of drying droplets. Phys Rev Lett 116(6):066101

    Article  PubMed  CAS  Google Scholar 

  37. Naji A, Jungblut S, Moreira AG, Netz RR (2005) Electrostatic interactions in strongly coupled soft matter. Physica A 352(1):131–170

    Article  Google Scholar 

  38. Dugyala VR, Basavaraj MG (2014) Control over coffee-ring formation in evaporating liquid drops containing ellipsoids. Langmuir 30(29):8680–8686

    Article  CAS  PubMed  Google Scholar 

  39. Seo C, Jang D, Chae J, Shin S (2017) Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution. Sci Rep 7(1):1–9

    Article  CAS  Google Scholar 

  40. Cox NL, Kraus CA, Fuoss RM (1935) Properties of electrolytic solutions. XVI. Conductance of electrolytes in anisole, ethylene bromide, and ethylene chloride at 25°. Trans Faraday Soc 31:749–761

    Article  CAS  Google Scholar 

  41. Ninham BW, Parsegian VA (1971) Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J Theor Biol 31(3):405–428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge our sponsors, the Ministry of Higher Education (MOHE) Malaysia, the University of Science Malaysia (USM), Unilever PLC and the Engineering and Physical Sciences Research Council (EPSRC) UK.

Funding

The project was funded by the Ministry of Higher Education Malaysia and Universiti Sains Malaysia (M.D.S) and Unilever and EPSRC UK (F.W).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Mohamad Danial Shafiq.

Ethics declarations

We declare that the manuscript is not being submitted to any journal during this time of submission.

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiq, M.D., Waggett, F., Ismail, N.L.M. et al. Electrostatic interactions of poly (methyl methacrylate) colloids: deposition patterns of evaporating non-aqueous colloidal droplets. Colloid Polym Sci 299, 49–61 (2021). https://doi.org/10.1007/s00396-020-04769-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04769-3

Keywords

Navigation