Skip to main content
Log in

Exploring the hydrogen absorption into Pd–Ir nanoalloys supported on carbon

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Comprehensive understanding of the hydrogen gas interaction with metal nanoparticles is crucial for the development of multifunctional materials. The hydrogen absorption properties of well-dispersed Pd–Ir nanoalloys on a mesoporous carbon are reported here. The average size of nanoalloys depends on the composition and is comprised between 2.7 and 3.5 nm with decreasing Ir content. Structural analysis evidences a single phase FCC structure for all nanoparticles and a linear variation of the lattice parameter with composition confirming the formation of nanoalloys in this bulk-immiscible system. The hydrogen absorption properties can be tuned by the chemical composition: Pd-rich nanoparticles form hydride phases, whereas Ir-rich phases do not absorb hydrogen under ambient temperature and pressure conditions. The thermodynamic properties of hydride formation in Pd-rich phases are altered relative to the bulk counterparts. Moreover, the hydrogen absorption capacity in Pd-rich nanoalloys is larger as compared to bulk alloys. This might be explained by an important finite size effect that increases the hydrogen absorption capability of Pd–Ir alloys at nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akamaru S, Hara M, Matsuyama M (2014) Alloying effects on the hydrogen-storage capability of Pd-TM-H (TM = Cu, Au, Pt, Ir) systems. J Alloys Compd 614:238–243. doi:10.1016/j.jallcom.2014.06.118

    Article  Google Scholar 

  • Bérubé V, Radtke G, Dresselhaus M, Chen G (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res 31:637–663

    Article  Google Scholar 

  • Bogerd R, Adelhelm P, Meeldijk JH et al (2009) The structural characterization and H2 sorption properties of carbon-supported Mg(1-x)Nix nanocrystallites. Nanotechnology 20:204019

    Article  Google Scholar 

  • de Jongh PE, Adelhelm P (2010) Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. ChemSusChem 3:1332–1348

    Article  Google Scholar 

  • de Jongh PE, Allendorf M, Vajo JJ, Zlotea C (2013) Nanoconfined light metal hydrides for reversible hydrogen storage. MRS Bull 38:488–494. doi:10.1557/mrs.2013.108

    Article  Google Scholar 

  • Driessen AA, Sanger PP, Hemmes HH, Griessen R (1990) Metal hydride formation at pressures up to 1Mbar. J Phys-Condens Matter 2:9797–9814. doi:10.1088/0953-8984/2/49/007

    Article  Google Scholar 

  • Ghimbeu CM, Zlotea C, Gadiou R et al (2011) Understanding the mechanism of hydrogen uptake at low pressure in carbon/palladium nanostructured composites. J Mater Chem 21:17765–17775. doi:10.1039/c1jm12939b

    Article  Google Scholar 

  • Griessen R, Strohfeldt N, Giessen H (2016) Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nat Mater 15:311–317

  • Kittel C (1996) Introduction to solid state physics. Wiley

  • Kobayashi H, Yamauchi M, Kitagawa H (2012) Finding hydrogen-storage capability in iridium induced by the nanosize effect. J Am Chem Soc 134:6893–6895

    Article  Google Scholar 

  • LaPrade M, Allard KD, Lynch JF, Flanagan TB (1974) Absorption of hydrogen by iridium/palladium substitutional alloys. J Chem Soc Faraday Trans 1(70):1615–1630. doi:10.1039/F19747001615

    Article  Google Scholar 

  • Lewis FA (1982) The palladium-hydrogen system. Platin Met Rev 26:121–128

    Google Scholar 

  • Liu X, Han Y, Evans JW et al (2015) Growth morphology and properties of metals on graphene. Prog Surf Sci 90:397–443. doi:10.1016/j.progsurf.2015.07.001

    Article  Google Scholar 

  • Liu X, Wang CZ, Hupalo M et al (2012) Metals on graphene: correlation between adatom adsorption behavior and growth morphology. Phys Chem Chem Phys 14:9157–9166. doi:10.1039/C2CP40527J

    Article  Google Scholar 

  • Manadé M, Viñes F, Illas F (2015) Transition metal adatoms on graphene: a systematic density functional study. Carbon 95:525–534. doi:10.1016/j.carbon.2015.08.072

    Article  Google Scholar 

  • Massalki TB (1990) Binary alloy phase diagrams, Second Edition. Ohio

  • Morfin F, Nassreddine S, Rousset JL, Piccolo L (2012) Nanoalloying effect in the preferential oxidation of CO over Ir-Pd catalysts. ACS Catal 2:2161–2168. doi:10.1021/cs3003325

    Article  Google Scholar 

  • Noh H, Luo S, Wang D et al (1995) The effects of hydriding-dehydriding cycles on the plateau pressures and van’t Hoff plots for Pd-Ni alloys. J Alloys Compd 218:139–142. doi:10.1016/0925-8388(94)01404-3

    Article  Google Scholar 

  • Oates WA (1982) Thermodynamic properties of the Pd-H system. J Common Met 88:411–424

    Article  Google Scholar 

  • Oumellal Y, Ghimbeu CM, de Yuso AM, Zlotea C (2017) Hydrogen absorption properties of carbon supported Pd–Ni nanoalloys. Int J Hydrog Energy. doi:10.1016/j.ijhydene.2016.09.101

  • Oumellal Y, Joubert J-M, Ghimbeu CM et al (2016a) Synthesis and stability of Pd–Rh nanoalloys with fully tunable particle size and composition. Nano-Struct Nano-Objects 7:92–100. doi:10.1016/j.nanoso.2016.06.005

    Article  Google Scholar 

  • Oumellal Y, Provost K, Ghimbeu CM et al (2016b) Composition and size dependence of hydrogen interaction with carbon supported bulk-immiscible Pd–Rh nanoalloys. Nanotechnology 27:465401

    Article  Google Scholar 

  • Piccolo L (2012) Surface studies of catalysis by metals: nanosize and alloying effects. In: Nanoalloys: synthesis, structure and properties, Springer-Verlag. London,

  • Piccolo L, Nassreddine S, Aouine M et al (2012) Supported Ir–Pd nanoalloys: size–composition correlation and consequences on tetralin hydroconversion properties. J Catal 292:173–180. doi:10.1016/j.jcat.2012.05.010

    Article  Google Scholar 

  • Pundt A, Kirchheim R (2006) Hydrogen in metals: microstructural Aspects. Annu Rev Mater Res 36:555–608. doi:10.1146/annurev.matsci.36.090804.094451

    Article  Google Scholar 

  • Raub E (1959) Metals and alloys of the platinum group. J Common Met 1:3–18. doi:10.1016/0022-5088(59)90014-1

    Article  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592. doi:10.1039/B502142C

    Article  Google Scholar 

  • Scheler T, Marqués M, Konôpková Z et al (2013) High-pressure synthesis and characterization of iridium trihydride. Phys Rev Lett 111:215503. doi:10.1103/PhysRevLett.111.215503

    Article  Google Scholar 

  • Vajo J, Pinkerton F, Stetson N (2009) Nanoscale phenomena in hydrogen storage. Nanotechnology 20:200201

    Article  Google Scholar 

  • Vons VA, Leegwater H, Legerstee WJ et al (2010) Hydrogen storage properties of spark generated palladium nanoparticles. Int J Hydrog Energy 35:5479–5489. doi:10.1016/j.ijhydene.2010.02.118

    Article  Google Scholar 

  • Weissmüller J, Lemier C (1999) Lattice constants of solid solution microstructures: the case of nanocrystalline Pd-H. Phys Rev Lett 82:213–216. doi:10.1103/PhysRevLett.82.213

    Article  Google Scholar 

  • Weissmuller J, Lemier C (2000) On the size dependence of the critical point of nanoscale interstitial solid solutions. Philos Mag Lett 80:411–418. doi:10.1080/095008300403558

    Article  Google Scholar 

  • Yamauchi M, Ikeda R, Kitagawa H, Takata M (2008) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299. doi:10.1021/jp710447j

    Article  Google Scholar 

  • Zlotea C, Cuevas F, Andrieux J et al (2013) Tunable synthesis of (Mg-Ni)-based hydrides nanoconfined in templated carbon studied by in situ synchrotron diffraction. Nano Energy 2:12–20. doi:10.1016/j.nanoen.2012.07.005

    Article  Google Scholar 

  • Zlotea C, Cuevas F, Paul-Boncour V et al (2010) Size-dependent hydrogen sorption in ultrasmall Pd clusters embedded in a mesoporous carbon template. J Am Chem Soc 132:7720–7729. doi:10.1021/ja101795g

    Article  Google Scholar 

  • Zlotea C, Ghimbeu CM, Oumellal Y et al (2015a) Hydrogen sorption properties of Pd-Co nanoalloys embedded into mesoporous carbons. Nanoscale 7:15469–15476. doi:10.1039/C5NR03143E

  • Zlotea C, Latroche M (2013) Role of nanoconfinement on hydrogen sorption properties of metal nanoparticles hybrids. Colloids Surf Physicochem Eng Asp 439:117–130. doi:10.1016/j.colsurfa.2012.11.043

    Article  Google Scholar 

  • Zlotea C, Morfin F, Nguyen TS et al (2014) Nanoalloying bulk-immiscible iridium and palladium inhibits hydride formation and promotes catalytic performances. Nanoscale 6:9955–9959. doi:10.1039/c4nr02836h

  • Zlotea C, Oumellal Y, Hwang S-J et al (2015b) Ultrasmall MgH2 nanoparticles embedded in an ordered microporous carbon exhibiting rapid hydrogen sorption kinetics. J Phys Chem C 119:18091–18098. doi:10.1021/acs.jpcc.5b05754

    Article  Google Scholar 

  • Zlotea C, Oumellal Y, Msakni M et al (2015c) First evidence of Rh nano-hydride formation at low pressure. Nano Lett 15:4752–4757. doi:10.1021/acs.nanolett.5b01766

    Article  Google Scholar 

  • Zlotea C, Oumellal Y, Provost K, Matei Ghimbeu C (2016) Experimental challenges in studying hydrogen absorption in ultra-small metal nanoparticles. Front Energy Res 4:24. doi:10.3389/fenrg.2016.00024

    Article  Google Scholar 

Download references

Acknowledgements

Julie Bourgon is acknowledged for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Zlotea.

Ethics declarations

Funding

This study was funded by the French National Research Agency (ANR) under GENESIS contract no 13-BS08-0004.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malouche, A., Oumellal, Y., Ghimbeu, C.M. et al. Exploring the hydrogen absorption into Pd–Ir nanoalloys supported on carbon. J Nanopart Res 19, 270 (2017). https://doi.org/10.1007/s11051-017-3978-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3978-4

Keywords

Navigation