Skip to main content
Log in

Catalytic Properties of Bulk (1–x)Ni–xW Alloys in the Decomposition of 1,2-Dichloroethane with the Production of Carbon Nanomaterials

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

This work was devoted to a search for effective catalysts for the processing of chlorine-substituted hydrocarbons to obtain carbon nanomaterials. A series of porous (1–x)Ni–xW nanoalloys with tungsten concentrations from 0.5 to 10 wt % was synthesized by a coprecipitation method. All of the samples were single-phase solid solutions based on a face-centered cubic (fcc) lattice of nickel and had a spongy structure. The kinetics of carbon erosion of bulk (1–x)Ni–xW alloys in the course of interaction with a reaction atmosphere containing 1,2-dichloroethane vapor at 600°C was studied. This process was accompanied by rapid disintegration of the alloys with the formation of active particles for the growth of carbon nanofibers (CNFs). The addition of tungsten led to an increase in the activity of nickel in the synthesis of CNFs by 10–70%. The highest yield of CNFs for 2 h of reaction (29.8 g/gNi) was observed with a Ni–W alloy (4 wt %). The structural and morphological features of the resulting carbon product were investigated. Electron-microscopic data indicated the formation of carbon filaments with a pronounced segmented structure. Raman spectroscopy data revealed that the addition of tungsten decreased the fraction of amorphous carbon in the product. According to the data of low-temperature nitrogen adsorption, the specific surface area of the carbon nanomaterial was 300–400 m2/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Buyanov, R.A., Chesnokov, V.V., Afanas’ev, A.D., and Babenko, V.S., Kinet. Katal., 1977, vol. 18, no. 4, p. 1021.

    CAS  Google Scholar 

  2. Buyanov, R.A., Chesnokov, V.V., and Afanas’ev, A.D., Kinet. Katal., 1979, vol. 20, no. 1, p. 207.

    CAS  Google Scholar 

  3. Chesnokov, V.V., Buyanov, R.A., and Afanas’ev, A.D., Kinet. Katal., 1979, vol. 20, no. 2, p. 477.

    CAS  Google Scholar 

  4. Buyanov, R.A. and Chesnokov, V.V., Chem. Sustainable Dev., 2005, vol. 13, no. 1, p. 37.

    CAS  Google Scholar 

  5. Chesnokov, V.V. and Buyanov, R.A., Russ. Chem. Rev., 2000, vol. 69, no. 7, p. 623.

    Article  CAS  Google Scholar 

  6. Chesnokov, V.V. and Buyanov, R.A., Ser. Kriticheskie Tekhnologii. Membrany, 2005, vol. 4, p. 75.

    Google Scholar 

  7. Patent RU 2093228 C1, 1997.

  8. Kartashov, L.M., Koblov, A.A., and Tkach, D.V., Vestnik MITKhT, 2007, no. 6, vol. 2, p. 35

    Google Scholar 

  9. Demina, T.Ya. and Shayakhmetova, L.R., Vestnik OGU, 2005, vol. 2, p. 10.

    Google Scholar 

  10. Garside M. Global production capacity of vinyl chloride monomer 2018 and 2023. https://www.statista.com/statistics/1063677/global-vinyl-chloride-monomer-production-capacity/

  11. Flid, M.R., Kartashov, L.M., and Treger, Y.A., Catalysts, 2020, vol. 10, p. 216.

    Article  CAS  Google Scholar 

  12. Golubina, E.V., Lokteva, E.S., Kavalerskaya, N.E., and Maslakov, K.I., Kinet. Catal., 2020, vol. 61, no. 3, p. 444.

    Article  CAS  Google Scholar 

  13. Gentsler, A.G., Simagina, V.I., Netskina, O.V., Komova, O.V., Tsybulya, S.V., and Abrosimov, O.G., Kinet. Catal., 2007, vol. 48, no. 1, p. 60.

    Article  CAS  Google Scholar 

  14. Ryaboshapka, D.A., Lokteva, E.S., Golubina, E.V., Kharlanov, A.N., Maslakov, K.I., Kamaev, A.O., Shumyantsev, A.V., Lipatova, I.A., and Shkol’nikov, E.I., Kinet. Catal., 2021, vol. 62, no. 1, p. 127.

    Article  CAS  Google Scholar 

  15. Mishakov, I.V., Chesnokov, V.V., Buyanov, R.A., and Pakhomov, N.A., Kinet. Catal., 2001, vol. 42, no. 4, p. 543.

    Article  CAS  Google Scholar 

  16. Liu, S., Martin-Martinez, M., Alvarez-Montero, M., Arevalo-Bastante, A., Rodriguez, J.J., and Gomez-Sainero, L.M., Catalysts, 2019, vol. 9, no. 9, p. 733.

    Article  CAS  Google Scholar 

  17. Martino, M., Rosal, R., Sastre, H., and Diez, F.V., Appl. Catal., B, 1999, vol. 20, p. 301.

    Article  CAS  Google Scholar 

  18. Legawiec-Jarzyna, M., Srebowata, A., Juszczyk, W., and Karpi.nski, Z., J. Mol. Catal. A: Chem., 2004, vol. 224, p. 171.

    Article  CAS  Google Scholar 

  19. Srebowata, A., Juszczyk, W., Kaszkur, Z., Sobczak, J.W., Kepinski, L., and Karpinski, Z., Appl. Catal., A, 2007, vol. 319, p. 181.

  20. Mishakov, I.V., Chesnokov, V.V., Buyanov, R.A., and Chuvilin, A.L., Dokl. Phys. Chem., 2002, vol. 386, nos. 1–3, p. 207.

    Article  CAS  Google Scholar 

  21. Mishakov, I.V., Buyanov, R.A., Zaikovskii, V.I., Strel’tsov, I.A., and Vedyagin, A.A., Kinet. Catal., 2008, vol. 49, no. 6, p. 868.

    Article  CAS  Google Scholar 

  22. Mishakov, I.V., Chesnokov, V.V., Buyanov, R.A., and Chuvilin, A.L., React. Kinet. Catal. Lett., 2002, vol. 76, no. 2, p. 361.

    Article  CAS  Google Scholar 

  23. Keane, M.A., Jacobs, G., and Patterson, P.M., J. Colloid Interface Sci., 2006, vol. 302, p. 576.

    Article  CAS  PubMed  Google Scholar 

  24. Bauman, Yu.I., Mishakov, I.V., Buyanov, R.A., Vedyagin, A.A., and Volodin, A.M., Kinet. Catal., 2011, vol. 52, no. 4, p. 547.

    Article  CAS  Google Scholar 

  25. Bauman, Yu.I., Mishakov, I.V., Vedyagin, A.A., Dmitriev, S.V., Mel’gunov, M.S., and Buyanov, R.A., Katal. Prom-sti., 2012, vol. 4, p. 261.

    Google Scholar 

  26. Bauman, Yu.I., Kenzhin, R.M., Volodin, A.M., Mishakov, I.V., and Vedyagin, A.A., Chem. Sustainable Dev., 2012, vol. 20, p. 119.

    Google Scholar 

  27. Mishakov, I.V., Vedyagin, A.A., Bauman, Y.I., Shubin, Y.V., and Buyanov, R.A., Carbon Nanofibers: Synthesis, Applications and Performance, Nova Science, 2018, p. 77.

  28. Lobiak, E.V., Shlyakhova, E.V., Bulusheva, L.G., Plyusnin, P.E., Shubin, Yu.V., and Okotrub, A.V., J. Alloys Compd., 2015, vol. 621, p. 351.

    Article  CAS  Google Scholar 

  29. Jang, E., Park, H.K., Choi, J.H., and Lee, C.S., Bull. Korean Chem. Soc., 2015, vol. 36, p. 1452.

    Article  CAS  Google Scholar 

  30. Zhang, Q., Liu, Y., Hu, L., Qian, W., Luo, G., and Wei, F., New Carbon Mater., 2008, vol. 23, p. 319.

    Article  CAS  Google Scholar 

  31. Sheng, J., Yi, X., Li, F., and Fang, W., React. Kinet. Mech. Catal., 2010, vol. 99, p. 371.

    CAS  Google Scholar 

  32. Yang, R., Du, X., Zhang, X., Xin, H., Zhou, K., Li, D., and Hu, C., ACS Omega, 2019, vol. 4, no. 6, p. 10580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, M.Q., Ma, Y.L., Ma, X.X., Sun, Y.G., and Songet, Z., RSC Adv., 2018, vol. 8, no. 20, p. 10907.

    Article  CAS  Google Scholar 

  34. Yusuf, M., Farooqi, A.S., Alam, M.A., Keong, L.K., Hellgardt, K., and Abdullah, B., Int. J. Hydrogen Energy, 2021.

  35. Zhang, S., Shi, C., Chen, B., Zhang, Y., and Qiu, J., Catal. Commun., 2015, vol. 69, p. 123.

    Article  CAS  Google Scholar 

  36. Vroulias, D., Gkoulemani, N., Papadopoulou, C., and Matralis, H., Catal. Today, 2020, vol. 355, p. 704.

    Article  CAS  Google Scholar 

  37. Allahyarzadeh, M.H., Aliofkhazraei, M., Rezvanian, A.R., Torabinejad, V., and Sabour Rouhaghdam, A.R., Surf. Coat. Technol., 2016, vol. 307, p. 978.

    Article  CAS  Google Scholar 

  38. Pan, G.Y., Ma, Y.L., Ma, X.X., Sun, Y.G., Lv, J.M., and Zhang, J.L., Chem. Eng. J., 2016, vol. 299, p. 386.

    Article  CAS  Google Scholar 

  39. Brauer, G., Handbuch der Präparativen Anorganischen Chemie: In Drei Bänden, 1978, p. 2113.

  40. Powder Diffraction File. PDF_2/Release 2009: International Centre for Diffraction Data, USA.

    Google Scholar 

  41. Nolze, G. and Kraus, W., Powder Diffr., 1998, vol. 13, p. 256.

    Google Scholar 

  42. Cullity, B.D., Elements of X-Ray Diffraction, Massachusetts: Addison–Wesley, 1978, 2nd ed.

    Google Scholar 

  43. Krumm, S., Mater. Sci. Forum, 1996, vols. 228–231, no. 1, p. 183.

    Article  Google Scholar 

  44. Mishakov, I.V., Bauman, Yu.I., Korneev, D.V., and Vedyagin, A.A., Top. Catal., 2013, vol. 56, no. 11, p. 1026.

    Article  CAS  Google Scholar 

  45. Grabke, H.J., Mater. Corros. 2003, vol. 54, no. 10, p. 736.

    Article  CAS  Google Scholar 

  46. Jarrah, N.A., Li, F., van Ommen, J.G., and Lefferts, L., J. Mater. Chem., 2005, vol. 5, p. 1946.

    Article  Google Scholar 

  47. Slabbert, G.A., Mulaudzi, F.M.L., Cornish, L.A., Papo, M.J., Morudu, V., and Zhang, J., J. S. Afr. Inst. Min. Metall., 2013, vol. 113, p. 81.

    CAS  Google Scholar 

  48. Bauman, Y.I., Rudneva, Y.V., Mishakov, I.V., Plyusnin, P.E., Shubin, Y.V., Korneev, D.V., Stoyanovskii, V.O., Vedyagin, A.A., and Buyanov, R.A., Heliyon, 2019, vol. 5, p. e02428.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bauman, Y.I., Mishakov, I.V., Rudneva, Y.V., Popov, A.A., Rieder, D., Korneev, D.V., Serkova, A.N., Shubin, Y.V., and Vedyagin, A.A., Catal. Today, 2020, vol. 348, p. 102.

    Article  CAS  Google Scholar 

  50. Bauman, Yu.I., Mishakov, I.V., Vedyagin, A.A., Serkova, A.N., and Gromov, A.A., Kinet. Catal., 2017, vol. 58, no. 4, p. 448.

    Article  CAS  Google Scholar 

  51. Rudneva, Y.V., Shubin, Y.V., Plyusnin, P.E., Bauman, Y.I., Mishakov, I.V., Korenev, S.V., and Vedyagin, A.A., J. Alloys Compd., 2019, vol. 782, p. 716.

    Article  CAS  Google Scholar 

  52. Bauman, Yu.I., Rudneva, Yu.V., Mishakov, I.V., Plyusnin, P.E., Shubin, Yu.V., and Vedyagin, A.A., Kinet. Catal., 2018, vol. 59, no. 3, p. 363.

    Article  CAS  Google Scholar 

  53. Bauman, Yu.I., Lysakova, A.S., Rudnev, A.V., Mishakov, I.V., Shubin, Yu.V., Vedyagin, A.A., and Buyanov, R.A., Nanotech. Russ., 2014, vol. 9, nos. 7–8, p. 380.

    Article  CAS  Google Scholar 

  54. Buyanov, R.A. and Mishakov, I.V., Chem. Sustainable Dev., 2019, vol. 27, no. 2, p. 167.

    Google Scholar 

  55. Chambers, A. and Baker, R.T.K., J. Phys. Chem. B, 1997, vol. 101, p. 1621.

    Article  CAS  Google Scholar 

  56. Bauman, Y.I., Shorstkaya, Y.V., Mishakov, I.V., Plyusnin, P.E., Shubin, Y.V., Korneev, D.V., Stoyanovskii, V.O., and Vedyagin, A.A., Catal. Today, 2017, vols. 293–294, p. 23.

    Article  Google Scholar 

  57. Nemanich, R.J. and Solin, S.A., Phys. Rev. B, 1979, vol. 20, p. 392.

    Article  CAS  Google Scholar 

  58. Tuinstra, F. and Koenig, J.L., J. Chem. Phys., 1970, vol. 53, p. 1126.

    Article  CAS  Google Scholar 

  59. Ferrari, A.C. and Robertson, J., Phys. Rev. B, 2000, vol. 61, p. 14095.

    Article  CAS  Google Scholar 

  60. Wang, Y., Alsmeyer, D.C., and McCreery, R.L., Chem. Mater., 1990, vol. 2, p. 557.

    Article  CAS  Google Scholar 

  61. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U., Carbon, 2005, vol. 43, p. 1731.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.N. Serkov and M.N. Volochaev for their assistance in examining the samples by electron microscopy.

The physicochemical properties of the samples were analyzed using the equipment of the Center for Collective Use “National Center for Catalyst Research.” The TEM analysis of the samples was carried out using the equipment of the Krasnoyarsk Regional Center for Collective Use of the Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch, Russian Academy of Sciences.

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state contract of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. AAAA-A21-121011390054-1). The synthesis and X-ray diffraction analysis of the porous nanoalloy samples were supported by the Russian Science Foundation (project no. 21-13-00414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mishakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

This work is dedicated to the memory of Roman Alekseevich Buyanov, corresponding member of the Russian Academy of Sciences

Translated by V. Makhlyarchuk

Abbreviations and notation: CNF, carbon nanofiber; VCM, vinyl chloride monomer; HDC, hydrodechlorination; DCE, 1,2-dichloroethane; ICP AES, inductively coupled plasma atomic emission spectroscopy; XRD, X-ray diffraction; CSR, coherent scattering region; SEM, scanning electron microscopy; TEM, transmission electron microscopy; BET, Brunauer–Emmett–Teller low-temperature nitrogen adsorption method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishakov, I.V., Bauman, Y.I., Potylitsyna, A.R. et al. Catalytic Properties of Bulk (1–x)Ni–xW Alloys in the Decomposition of 1,2-Dichloroethane with the Production of Carbon Nanomaterials. Kinet Catal 63, 75–86 (2022). https://doi.org/10.1134/S0023158422010037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422010037

Keywords:

Navigation