Skip to main content
Log in

Graphene-induced apoptosis in lung epithelial cells through EGFR

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Expanding interest in nanotechnology applied to electronic and biomedical fields has led to fast-growing development of various nanomaterials. Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms with unique physical and chemical properties. Recently, graphene has been used in many studies on electronics, photonics, composite materials, energy generation and storage, sensors, and biomedicine. However, the current health risk assessment for graphene has been relatively limited and inconclusive. This study evaluated the toxicity effects of graphene on the airway epithelial cell line BEAS-2B, which represents the first barrier of the human body to interact with airborne graphene particles. Our result showed that graphene can induce the cellular Ca2+ by phospholipase C (PLC) associated pathway by activating epidermal growth factor receptor (EGFR). Subsequently, inositol 1,4,5-triphosphate (IP3) receptors activate the release of Ca2+ from the endoplasmic reticulum (ER) Ca2+ stores. Those Ca2+ signals further trigger the calcium-regulated apoptosis in the cell. Furthermore, the stimulation can cause EGFR upregulation, which have been demonstrated to associate with diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and cardiovascular diseases. This study highlights the additional health risk considering that it can function as a contributing factor for other respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K (2013) Prospects and challenges of graphene in biomedical applications. Adv Mater 25(16):2258–2268. doi:10.1002/adma.201203700

    Article  Google Scholar 

  • Cabellos-Aparicio A, Llatser I, Alarcon E, Hsu A, Palacios T (2015) Use of terahertz photoconductive sources to characterize tunable graphene RF plasmonic antennas. Ieee T Nanotechnol 14(2):390–396. doi:10.1109/Tnano.2015.2398931

    Article  Google Scholar 

  • Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210. doi:10.1016/j.toxlet.2010.11.016

    Article  Google Scholar 

  • Chen EY, Garnica M, Wang YC, Mintz AJ, Chen CS, Chin WC (2012) A mixture of anatase and rutile TiO(2) nanoparticles induces histamine secretion in mast cells. Part Fibre Toxicol 9:2. doi:10.1186/1743-8977-9-2

    Article  Google Scholar 

  • Clapham DE (1995) Calcium signaling. Cell 80(2):259–268

    Article  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058. doi:10.1016/j.cell.2007.11.028

    Article  Google Scholar 

  • Comfort KK, Maurer EI, Braydich-Stolle LK, Hussain SM (2011) Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 5(12):10000–10008. doi:10.1021/nn203785a

    Article  Google Scholar 

  • de Boer WI, Hau CM, van Schadewijk A, Stolk J, van Krieken JH, Hiemstra PS (2006) Expression of epidermal growth factors and their receptors in the bronchial epithelium of subjects with chronic obstructive pulmonary disease. Am J Clin Pathol 125(2):184–192. doi:10.1309/W1AX-KGT7-UA37-X257

    Article  Google Scholar 

  • Duch MC, Budinger GS, Liang YT, Soberanes S, Urich D, Chiarella SE, Campochiaro LA, Gonzalez A, Chandel NS, Hersam MC (2011) Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett 11(12):5201–5207

    Article  Google Scholar 

  • Garcia-Canton C, Minet E, Anadon A, Meredith C (2013) Metabolic characterization of cell systems used in in vitro toxicology testing: lung cell system BEAS-2B as a working example. Toxicology in Vitro : an International Journal Published in Association with BIBRA 27(6):1719–1727. doi:10.1016/j.tiv.2013.05.001

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. doi:10.1038/nmat1849

    Article  Google Scholar 

  • Hajnoczky G, Csordas G, Madesh M, Pacher P (2000) Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals. Cell Calcium 28(5–6):349–363. doi:10.1054/ceca.2000.0169

    Article  Google Scholar 

  • Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700. doi:10.1021/nn200021j

    Article  Google Scholar 

  • Jastrzebska AM, Kurtycz P, Olszyna AR (2012) Recent advances in graphene family materials toxicity investigations. Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 14(12):1320. doi:10.1007/s11051-012-1320-8

    Article  Google Scholar 

  • Jastrzębska AM, Olszyna AR (2015) The ecotoxicity of graphene family materials: current status, knowledge gaps and future needs. J Nanopart Res 17(1):1–21

    Article  Google Scholar 

  • Jellerette T, He CL, Wu H, Parys JB, Fissore RA (2000) Down-regulation of the inositol 1,4,5-trisphosphate receptor in mouse eggs following fertilization or parthenogenetic activation. Dev Biol 223(2):238–250. doi:10.1006/dbio.2000.9675

    Article  Google Scholar 

  • Kostarelos K (2008) The long and short of carbon nanotube toxicity. Nat Biotechnol 26(7):774–776. doi:10.1038/nbt0708-774

    Article  Google Scholar 

  • Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642. doi:10.1146/annurev.physiol.60.1.619

    Article  Google Scholar 

  • Liao KH, Lin YS, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3(7):2607–2615. doi:10.1021/am200428v

    Article  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877. doi:10.1021/ja803688x

    Article  Google Scholar 

  • Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015–1024. doi:10.1038/nchem.907

    Article  Google Scholar 

  • Mesarič T, Sepčič K, Piazza V, Gambardella C, Garaventa F, Drobne D, Faimali M (2013) Effects of nano carbon black and single-layer graphene oxide on settlement, survival and swimming behaviour of Amphibalanus amphitrite larvae. Chem Ecol 29(7):643–652

    Article  Google Scholar 

  • Okamoto I, Mitsudomi T, Nakagawa K, Fukuoka M (2010) The emerging role of epidermal growth factor receptor (EGFR) inhibitors in first-line treatment for patients with advanced non-small cell lung cancer positive for EGFR mutations. Therapeutic advances in medical oncology 2(5):301–307. doi:10.1177/1758834010370698

    Article  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565. doi:10.1038/nrm1150

    Article  Google Scholar 

  • Park H, Chang S, Jean J, Cheng JJ, Araujo PT, Wang M, Bawendi MG, Dresselhaus MS, Bulovic V, Kong J, Gradecak S (2013) Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett 13(1):233–239. doi:10.1021/nl303920b

    Article  Google Scholar 

  • Pedersen MW, Pedersen N, Damstrup L, Villingshoj M, Sonder SU, Rieneck K, Bovin LF, Spang-Thomsen M, Poulsen HS (2005) Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation. J Cell Biochem 96(2):412–427. doi:10.1002/jcb.20554

    Article  Google Scholar 

  • Peng C, Hu W, Zhou Y, Fan C, Huang Q (2010) Intracellular imaging with a graphene-based fluorescent probe. Small 6(15):1686–1692. doi:10.1002/smll.201000560

    Article  Google Scholar 

  • Peuschel H, Sydlik U, Grether-Beck S, Felsner I, Stockmann D, Jakob S, Kroker M, Haendeler J, Gotic M, Bieschke C, Krutmann J, Unfried K (2012) Carbon nanoparticles induce ceramide- and lipid raft-dependent signalling in lung epithelial cells: a target for a preventive strategy against environmentally-induced lung inflammation. Particle and fibre toxicology 9:48. doi:10.1186/1743-8977-9-48

    Article  Google Scholar 

  • Ping J, Zhou Y, Wu Y, Papper V, Boujday S, Marks RS, Steele TW (2015) Recent advances in aptasensors based on graphene and graphene-like nanomaterials. Biosens Bioelectron 64:373–385. doi:10.1016/j.bios.2014.08.090

    Article  Google Scholar 

  • Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J, Global Initiative for Chronic Obstructive Lung D (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176 (6):532–555. doi:10.1164/rccm.200703-456SO

  • Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, Muthuswamy SK, Brugge JS (2003) Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol 5(8):733–740. doi:10.1038/ncb1026

    Article  Google Scholar 

  • Rush JS, Quinalty LM, Engelman L, Sherry DM, Ceresa BP (2012) Endosomal accumulation of the activated epidermal growth factor receptor (EGFR) induces apoptosis. J Biol Chem 287(1):712–722. doi:10.1074/jbc.M111.294470

    Article  Google Scholar 

  • Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15–34. doi:10.1021/tx200339h

    Article  Google Scholar 

  • Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nano 3(6):2461–2464. doi:10.1039/c1nr10172b

    Google Scholar 

  • Schinwald A, Murphy F, Askounis A, Koutsos V, Sefiane K, Donaldson K, Campbell CJ (2014) Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology 8(8):824–832. doi:10.3109/17435390.2013.831502

    Article  Google Scholar 

  • Schinwald A, Murphy FA, Jones A, MacNee W, Donaldson K (2012) Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6(1):736–746. doi:10.1021/nn204229f

    Article  Google Scholar 

  • Sharma S, Stutzman JD, Kelloff GJ, Steele VE (1994) Screening of potential chemopreventive agents using biochemical markers of carcinogenesis. Cancer Res 54(22):5848–5855

    Google Scholar 

  • Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2(3):283–294. doi:10.7150/thno.3642

    Article  Google Scholar 

  • Singh D, Whooley MA, Ix JH, Ali S, Shlipak MG (2007) Association of cystatin C and estimated GFR with inflammatory biomarkers: the Heart and Soul Study. Nephrol Dial Transplant: Off Publ Eur Dial Transplant Assoc- Eur Renal Assoc 22(4):1087–1092. doi:10.1093/ndt/gfl744

    Article  Google Scholar 

  • Singh SK, Singh MK, Nayak MK, Kumari S, Shrivastava S, Gracio JJ, Dash D (2011) Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5(6):4987–4996. doi:10.1021/nn201092p

    Article  Google Scholar 

  • Skuland T, Ovrevik J, Lag M, Schwarze P, Refsnes M (2014) Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-alpha/EGFR-pathway and NF-kappabeta signalling. Toxicol Appl Pharmacol 279(1):76–86. doi:10.1016/j.taap.2014.05.006

    Article  Google Scholar 

  • Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Particle Fibre Toxicol 7:22. doi:10.1186/1743-8977-7-22

    Article  Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212. doi:10.1007/s12274-008-8021-8

    Article  Google Scholar 

  • Szalai G, Krishnamurthy R, Hajnoczky G (1999) Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J 18(22):6349–6361. doi:10.1093/emboj/18.22.6349

    Article  Google Scholar 

  • Thastrup O, Dawson AP, Scharff O, Foder B, Cullen PJ, Drobak BK, Bjerrum PJ, Christensen SB, Hanley MR (1989) Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents and actions 27(1–2):17–23

    Article  Google Scholar 

  • Wang G, Qian F, Saltikov CW, Jiao Y, Li Y (2011) Microbial reduction of graphene oxide by Shewanella. Nano Res 4(6):563–570

    Article  Google Scholar 

  • Wells A (1999) EGF receptor. Int J Biochem Cell Biol 31(6):637–643

    Article  Google Scholar 

  • Yamaguchi J, Hayashi K, Sato S, Yokoyama N (2013) Passivating chemical vapor deposited graphene with metal oxides for transfer and transistor fabrication processes. Appl Phys Lett 102 (14). Doi:Artn 143505 10.1063/1.4801927

  • Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z (2011) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5(1):516–522. doi:10.1021/nn1024303

    Article  Google Scholar 

  • Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137. doi:10.1038/35052073

    Article  Google Scholar 

  • Zang J, Ryu S, Pugno N, Wang Q, Tu Q, Buehler MJ, Zhao X (2013) Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat Mater 12(4):321–325. doi:10.1038/nmat3542

    Article  Google Scholar 

  • Zhang X, Liu G, Kang Y, Dong Z, Qian Q, Ma X (2013) N-cadherin expression is associated with acquisition of EMT phenotype and with enhanced invasion in erlotinib-resistant lung cancer cell lines. PLoS One 8(3):e57692. doi:10.1371/journal.pone.0057692

    Article  Google Scholar 

  • Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4(6):3181–3186. doi:10.1021/nn1007176

    Article  Google Scholar 

  • Zhao X, Dai W, Zhu H, Zhang Y, Cao L, Ye Q, Lei P, Shen G (2006) Epidermal growth factor (EGF) induces apoptosis in a transfected cell line expressing EGF receptor on its membrane. Cell Biol Int 30(8):653–658. doi:10.1016/j.cellbi.2006.04.004

    Article  Google Scholar 

  • Zhou Q, Zettl A (2013) Electrostatic graphene loudspeaker. Appl Phys Lett 102 (22). Doi:Artn 223109 10.1063/1.4806974

Download references

Acknowledgements

The authors thank Mike Dunlap from IMF for the assistance with SEM imaging.

Author information

Authors and Affiliations

Authors

Contributions

SMT, PB, and EYC: designed the research, conducted the experiments, analyzed and interpreted the data. SMT, PB, MHC, AS, MG, SGG, and WCC: wrote, reviewed, and revised the manuscript. DL and JPC: conducted the experiment. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Wei-Chun Chin.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All data are available.

Conflict of interests

The authors declare that they have no competing interests.

Funding

This study was supported by grants from National Heart, Lung, and Blood Institute (1R15-HL-095039); National Science Foundation (CBET-0932404); and Linkou Chang Gung Memorial Hospital (CMRPG3F0601, CMRPD2F001, and CMRPG3D0082).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, SM., Bangalore, P., Chen, E.Y. et al. Graphene-induced apoptosis in lung epithelial cells through EGFR. J Nanopart Res 19, 262 (2017). https://doi.org/10.1007/s11051-017-3957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3957-9

Keywords

Navigation