Skip to main content
Log in

Synergistic effect of sodium ions and fluoride ions on synthesis of pure-phase TiO2(B) nanorings

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

TiO2(B) has received growing interest as negative electrode materials for Li-ion batteries in recent years. However, its metastability is an intrinsic obstacle for obtaining highly pure-phase TiO2(B). In this study, we reported the synthesis of pure-phase TiO2(B) nanorings with high crystallinity via one-pot hydrothermal method in the presence of sodium fluoride (NaF) solution. The as-prepared TiO2(B) nanorings were systematically characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The TiO2(B) nanorings had an outer diameter of about 400 nm and inner diameter of about 150 nm. Sodium fluoride was used as phase and morphology control agent. The growth mechanism revealed that sodium ions (Na+) and fluoride ions (F) had a synergistic effect on the synthesis of pure-phase TiO2(B) nanorings. The morphologies and crystalline phases were easily tailored by tuning the concentration of NaF. The effect of hydrothermal condition on growth of TiO2(B) nanorings was investigated in detail. The as-prepared TiO2(B) nanorings displayed high performance as negative electrode materials in Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andreev YG, Panchmatia PM, Liu Z, Parker SC, Islam MS, Bruce PG (2014) The shape of TiO2-B nanoparticles. J Am Chem Soc 136:6306–6312. doi:10.1021/ja412387c

    Article  Google Scholar 

  • Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988–4992. doi:10.1002/anie.200460091

    Article  Google Scholar 

  • Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) TiO2-B nanowires. Angew Chem Int Ed 43:2286–2288. doi:10.1002/anie.200353571

    Article  Google Scholar 

  • Armstrong G, Armstrong AR, Canales J, Bruce PG (2005) Nanotubes with the TiO2-B structure. Chem Commun:2454–2456. doi:10.1039/b501883h

  • Bai Y, Mora-Seró I, De Angelis F, Bisquert J, Wang P (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev. doi:10.1021/cr400606n

  • Beuvier T, Richard-Plouet M, Mancini-Le Granvalet M, Brousse T, Crosnier O, Brohan L (2010) TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. Inorg Chem 49:8457–8464. doi:10.1021/ic1010192

    Article  Google Scholar 

  • Brutti S, Gentili V, Menard H, Scrosati B, Bruce PG (2012) TiO2-(B) nanotubes as anodes for lithium batteries: origin and mitigation of irreversible capacity. Adv Energy Mater 2:322–327. doi:10.1002/aenm.201100492

    Article  Google Scholar 

  • Cai Y et al (2015) Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Sci Rep 5:11557. doi:10.1038/srep11557 http://www.nature.com/articles/srep11557#supplementary-information

    Article  Google Scholar 

  • Chen X, Selloni A (2014) Introduction: titanium dioxide (TiO2) nanomaterials. Chem Rev 114:9281–9282. doi:10.1021/cr500422r

    Article  Google Scholar 

  • Chen C, Hu R, Mai K, Ren Z, Wang H, Qian G, Wang Z (2011) Shape evolution of highly crystalline anatase TiO2 nanobipyramids. Cryst Growth Des 11:5221–5226. doi:10.1021/cg200457g

    Article  Google Scholar 

  • Chiarello GL, Zuliani A, Ceresoli D, Martinazzo R, Selli E (2016) Exploiting the photonic crystal properties of TiO2 nanotube arrays to enhance photocatalytic hydrogen production. ACS Catal 6:1345–1353. doi:10.1021/acscatal.5b02817

    Article  Google Scholar 

  • Dong F, Guo Y, Xu P, Yin X, Li Y, He M (2017) Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells. Science China Materials:1–9. doi:10.1007/s40843-017-9009-8

  • Fehse M, Ventosa E (2015) Is TiO2(B) the future of titanium-based battery materials? ChemPlusChem 80:785–795. doi:10.1002/cplu.201500038

    Article  Google Scholar 

  • Fernández-Werner L, Faccio R, Juan A, Pardo H, Montenegro B, Mombrú ÁW (2014) Ultrathin (001) and (100) TiO2(B) sheets: surface reactivity and structural properties. Appl Surf Sci 290:180–187. doi:10.1016/j.apsusc.2013.11.029

    Article  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21

    Article  Google Scholar 

  • Giannuzzi R et al (2014) Ultrathin TiO2(B) nanorods with superior lithium-ion storage performance. ACS Appl Mater Interfaces 6:1933–1943. doi:10.1021/am4049833

    Article  Google Scholar 

  • Hong Z, Wei M (2013) Layered titanate nanostructures and their derivatives as negative electrode materials for lithium-ion batteries. J Mater Chem A 1:4403–4414. doi:10.1039/c2ta01312f

    Article  Google Scholar 

  • Hossain MK, Koirala AR, Akhtar US, Song MK, Yoon KB (2015) First synthesis of highly crystalline, hexagonally ordered, uniformly mesoporous TiO2–B and its optical and photocatalytic properties. Chem Mater. doi:10.1021/acs.chemmater.5b01800

  • Hua X, Liu Z, Bruce PG, Grey CP (2015) The morphology of TiO2 (B) nanoparticles. J Am Chem Soc 137:13612–13623. doi:10.1021/jacs.5b08434

    Article  Google Scholar 

  • Jiao Y, Zhao B, Chen F, Zhang J (2011) Insight into the crystal lattice formation of brookite in aqueous ammonia media: the electrolyte effect. CrystEngComm 13:4167–4173. doi:10.1039/c0ce00932f

    Article  Google Scholar 

  • Jiao W, Xie Y, Chen R, Zhen C, Liu G, Ma X, Cheng H-M (2013) Synthesis of mesoporous single crystal rutile TiO2 with improved photocatalytic and photoelectrochemical activities. Chem Commun 49:11770–11772. doi:10.1039/c3cc46527f

    Article  Google Scholar 

  • Kakarla Raghava R, Vincent GG, Mahbub H (2014) Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Materials Research Express 1:015012

    Article  Google Scholar 

  • Kobayashi M, Petrykin VV, Kakihana M, Tomita K, Yoshimura M (2007) One-step synthesis of TiO2(B) nanoparticles from a water-soluble titanium complex. Chem Mater 19:5373–5376. doi:10.1021/cm071370q

    Article  Google Scholar 

  • Li Q et al (2008a) Synthesis of high-density Nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties. Inorg Chem 47:9870–9873. doi:10.1021/ic800758d

    Article  Google Scholar 

  • Li W et al (2008b) Enhanced photocatalytic activity in anatase/TiO2(B) core−shell nanofiber. J Phys Chem C 112:20539–20545. doi:10.1021/jp808183q

    Article  Google Scholar 

  • Liu M, Lv KL, Wang GH, Wang ZY, Zhao YX, Deng YR (2010) Effect of fluoride on the photocatalytic activity of hollow TiO2 microspheres prepared by fluoride-mediated self-transformation. Chemical Engineering & Technology 33:1531–1536. doi:10.1002/ceat.201000144

    Article  Google Scholar 

  • Liu S et al (2013a) A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life. Adv Mater 25:3462–3467. doi:10.1002/adma.201300953

    Article  Google Scholar 

  • Liu Z, Andreev YG, Robert Armstrong A, Brutti S, Ren Y, Bruce PG (2013b) Nanostructured TiO2(B): the effect of size and shape on anode properties for Li-ion batteries. Prog Nat Sci-Mater 23:235–244. doi:10.1016/j.pnsc.2013.05.001

    Article  Google Scholar 

  • Lv K, Cheng B, Yu J, Liu G (2012) Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys Chem Chem Phys 14:5349–5362. doi:10.1039/c2cp23461k

    Article  Google Scholar 

  • Meng X et al (2012) Facile synthesis of direct sunlight-driven anatase TiO2 nanoparticles by in situ modification with trifluoroacetic acid. J Nanopart Res 14:1–7. doi:10.1007/s11051-012-1176-y

    Article  Google Scholar 

  • Myung S-T, Takahashi N, Komaba S, Yoon CS, Sun Y-K, Amine K, Yashiro H (2011) Nanostructured TiO2 and its application in lithium-ion storage. Adv Funct Mater 21:3231–3241. doi:10.1002/adfm.201002724

    Article  Google Scholar 

  • Pan K, Dong Y, Tian C, Zhou W, Tian G, Zhao B, Fu H (2009) TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for dye-sensitized solar cells. Electrochim Acta 54:7350–7356. doi:10.1016/j.electacta.2009.07.065

    Article  Google Scholar 

  • Reddy KR, Nakata K, Ochiai T, Murakami T, Tryk DA, Fujishima A (2011) Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2 nanofiber composites. J Nanosci Nanotechnol 11:3692–3695. doi:10.1166/jnn.2011.3805

    Article  Google Scholar 

  • Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A Gen 489:1–16. doi:10.1016/j.apcata.2014.10.001

    Article  Google Scholar 

  • Reddy KR, Karthik KV, Prasad SBB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174. doi:10.1016/j.poly.2016.08.029

    Article  Google Scholar 

  • Ren Y, Liu Z, Pourpoint F, Armstrong AR, Grey CP, Bruce PG (2012) Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angew Chem 124:2206–2209. doi:10.1002/ange.201108300

    Article  Google Scholar 

  • Wang C et al (2012) Morphologically-tunable TiO2 nanorod film with high energy facets: green synthesis, growth mechanism and photocatalytic activity. Nano 4:5023–5030. doi:10.1039/c2nr31127e

    Google Scholar 

  • Wessel C et al (2011) Ionic-liquid synthesis route of TiO2(B) nanoparticles for functionalized materials. Chem Eur J 17:775–779. doi:10.1002/chem.201002791

    Article  Google Scholar 

  • Wu D, Liu J, Zhao X, Li A, Chen Y, Ming N (2006) Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem Mater 18:547–553. doi:10.1021/cm0519075

    Article  Google Scholar 

  • Wu Q et al (2015) Ultrathin anatase TiO2 nanosheets embedded with TiO2-B nanodomains for lithium-ion storage: capacity enhancement by phase boundaries. Adv Energy Mater 5:1401756. doi:10.1002/aenm.201401756

    Article  Google Scholar 

  • Xiang G, Li T, Zhuang J, Wang X (2010) Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chem Commun 46:6801–6803. doi:10.1039/c0cc02327b

    Article  Google Scholar 

  • Xu H, Ouyang S, Liu L, Reunchan P, Umezawa N, Ye J (2014) Recent advances in TiO2-based photocatalysis. J Mater Chem A 2:12642–12661. doi:10.1039/c4ta00941j

    Article  Google Scholar 

  • Yamamoto K, Tomita K, Fujita K, Kobayashi M, Petrykin V, Kakihana M (2009) Synthesis of TiO2(B) using glycolato titanium complex and post-synthetic hydrothermal crystal growth of TiO2(B). J Crystal Growth 311:619–622. doi:10.1016/j.jcrysgro.2008.09.041

    Article  Google Scholar 

  • Yang HG et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–U634

    Article  Google Scholar 

  • Yang Z et al (2011) TiO2(B)@anatase hybrid nanowires with highly reversible electrochemical performance. Electrochem Commun 13:46–49. doi:10.1016/j.elecom.2010.11.009

    Article  Google Scholar 

  • Yu J, Zhang J (2010) A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity. Dalton Trans 39:5860–5867

    Article  Google Scholar 

  • Zhao B, Chen F, Liu H, Zhang J (2011) Mesoporous TiO2-B nanowires synthesized from tetrabutyl titanate. J Phys Chem Solids 72:201–206. doi:10.1016/j.jpcs.2010.12.014

    Article  Google Scholar 

  • Zheng Z, Huang B, Lu J, Qin X, Zhang X, Dai Y (2011) Hierarchical TiO2 microspheres: synergetic effect of {001} and {101} facets for enhanced photocatalytic activity. Chem Eur J 17:15032–15038. doi:10.1002/chem.201101466

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by joint program of Beijing Natural Science Foundation and Beijing Academy of Science and Technology (No. L140005) and National Natural Science Foundation of China (No. 51203094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfu Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 1311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Zou, Y., Zhou, H. et al. Synergistic effect of sodium ions and fluoride ions on synthesis of pure-phase TiO2(B) nanorings. J Nanopart Res 19, 192 (2017). https://doi.org/10.1007/s11051-017-3889-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3889-4

Keywords

Navigation