Skip to main content
Log in

Effect of the surface on the internal structure of CdSe crystal lattice based on molecular dynamics simulations

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The results of molecular dynamics (MD) simulations of CdSe crystals terminated by low-index atomic planes, (100), (110) and (111), are presented. The effect of the crystal termination on the atomic arrangement (interatomic distances) at the surface and underneath the surface is examined. It is shown that the crystal lattice is distorted in lateral and normal directions to the depth of up to about 2 nm from the surface. The exact characteristic of the changes of interatomic distances is specific to the type of the atomic plane terminating the crystal lattice. At some surfaces, the very last monoatomic layer loses the long-range ordering and becomes quasi amorphous. The atoms group into randomly distributed pairs or short linear groups.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benkabou F, Aourag H, Certier M (2000) Atomistic study of zinc-blende CdS, CdSe, ZnS, and ZnSe from molecular dynamics. Mater Chem Phys 66. doi:10.1016/S0254-0584(00)00239-X

  • Botti S, Marques MAL (2007) Identification of fullerene-like CdSe nanoparticles from optical spectroscopy calculations. PhysRevB 75:035311. doi:10.1103/PhysRevB.75.035311

    Google Scholar 

  • Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474. doi:10.1103/PhysRevLett.55.2471

    Article  Google Scholar 

  • Cherian R, Mahadevan P (2008) Size dependence of lattice constants of semiconductor nanocrystals. Appl.Phys.Lett. 92:043130. doi:10.1063/1.2839372

    Article  Google Scholar 

  • Choi JH, Wang H, Oh SJ, Paik T, Sung P, Sung J, Ye X, Zhao T, Diroll BT, Murray CB, Kagan CR (2016) Exploiting the colloidal nanocrystal library to construct electronic devices. Science 352(6282):205–208. doi:10.1126/science.aad0371

    Article  Google Scholar 

  • Defay R, Prigogine I (1966) Surface Tension and Adsorption. Longmans, Green & Co Ltd. ISBN-10: 0582462843, ISBN-13: 978–0582462847

  • Deligos E, Colakoglu K, Ciftci Y (2006) Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe. Physica B: Physics of Condensed Matter 373(1):124–130. doi:10.1016/j.physb.2005.11.099

    Article  Google Scholar 

  • Egami T, Billinge SJL (2003) Underneath the Bragg Peaks: Structural Analysis of Complex Materials. Pergamon. ISBN 0080426980, 9780080426983

  • Ghosh S, Gaspari R, Bertoni G, Spadaro MC, Prato M, Turner S, Cavalli A, Manna L, Brescia R (2015) Pyramid-shaped Wurtzite CdSe nanocrystals with inverted polarity. ACS Nano 9(8):8537–8546. doi:10.1021/acsnano.5b03636

    Article  Google Scholar 

  • Goncalves S, Bonadeo H (1992) Vibrational densities of states from molecular-dynamics calculations. Phys Rev B 46:12019. doi:10.1103/PhysRevB.46.12019

    Article  Google Scholar 

  • Griebel M, Knapek S, Zumbusch G (2007) Numerical simulation in molecular dynamics. Springer, Berlin ISBN 978-3-540-68094-9

    Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695. doi:10.1103/PhysRevA.31.1695

    Article  Google Scholar 

  • Kelley AM (2016) Comparison of three empirical force fields for phonon calculations in CdSe quantum dots. J Chem Phys 144:214702. doi:10.1063/1.4952990

    Article  Google Scholar 

  • Neeleshwar S, Chen CL, Tsai CB, Chen YY, Chen CC, Shyu SG, Seehra MS (2005) Size-dependent properties of CdSe quantum dots. Phys Rev B 71:201307sRd. doi:10.1103/PhysRevB.71.201307

    Article  Google Scholar 

  • Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268. doi:10.1080/00268978400101201

    Article  Google Scholar 

  • Palosz B, Stelmakh S, Grzanka E, Gierlotka S, Pielaszek R, Bismayer U, Werner S, Palosz W (2004) High pressure X-ray diffraction studies on nanocrystalline materials. J Physics Condensed Matter 16(5):S353–S377 ISBN 978-1-880653-96-8, ISSN 1098-6189

    Article  Google Scholar 

  • Palosz B, Grzanka E, Gierlotka S, Stelmakh S (2010) Nanocrystals: breaking limitations of data analysis. Z Kristallogr 225:588–598. doi:10.1524/zkri.2010.1358

    Article  Google Scholar 

  • Pokrant S, Whaley KB (1999) Tight-binding studies of surface effects on electronic structure of CdSe nanocrystals: the role of organic ligands, surface reconstruction, and inorganic capping shells. JEuropean Physical Journal D 6:255–267. doi:10.1007/s100530050307

    Article  Google Scholar 

  • Puzder A, Williamson AJ, Gygi F, Galli G (2004) Self-healing of CdSe: first principles calculations. PhysRevLetters 92(21):21741. doi:10.1103/PhysRevLett.92.217401

    Google Scholar 

  • Rabani E (2001) Structure and electrostatic properties of passivated CdSe nanocrystals. JChemPhys 115(3):1493–1497. doi:10.1063/1.1380748

    Google Scholar 

  • Rapaport DC (2004) The Art of Molecular Dynamics Simulation. ISBN9780521825689

  • Skrobas K, Gierlotka S, Palosz B, Stelmakh S (2016) NanoPDF - the computer program to simulate and analyze the Pair Distribution Function of nanocrystals. http://www.unipress.waw.pl/soft/crystallography/nanopdf/

  • Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43(2):190–200. doi:10.1021/ar9001069

    Article  Google Scholar 

  • Szemjonov A, Pauporte T, Ithurria S, Lequeux N, Dubertet B, Ciofini I, Labat F (2014) Ligand-stabilized CdSe nanoplatelet hybrid structures with tailored geometric and electronic properties. RDC Advances 4:55980–55989. doi:10.1039/C4RA10082D

    Google Scholar 

  • Tersoff J (1988) New empirical approach for the strucutre and energy of covalent systems. Phys Rev B 37:12. doi:10.1103/PhysRevB.37.6991

    Article  Google Scholar 

  • Todorov IT, Smith W, Trachenko K, Dove MT (2006) DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem 16:1911–1918. doi:10.1039/B517931A

    Article  Google Scholar 

  • Zhu L, Yao KL, Liu ZL, Li YB (2009) First-principles studies of the atomic reconstructions of CdSe (001) and (111) surfaces. JPhys: CondensMatter 21:095001. doi:10.1088/0953-8984/21/9/095001

    Google Scholar 

Download references

Acknowledgements

Fruitful discussions with Dr. W. Palosz are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Stelmakh.

Ethics declarations

Funding

This study was funded by the National Science Centre (grant number DEC-2011/01/B/ST3/02292).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stelmakh, S., Skrobas, K., Gierlotka, S. et al. Effect of the surface on the internal structure of CdSe crystal lattice based on molecular dynamics simulations. J Nanopart Res 19, 170 (2017). https://doi.org/10.1007/s11051-017-3852-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3852-4

Keywords

Navigation