Skip to main content
Log in

A novel core–shell nanocomposite Ni–Ca@mSiO2 for benzophenone selective hydrogenation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A novel core–shell nanocomposite Ni–Ca@mSiO2 was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO2 can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO2. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO2 can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.

A magnetic core–shell nanocomposite Ni–Ca@mSiO2 exhibited good activity, selectivity, and reusability in benzophenone selective hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afsar A, Harwood LM, Hudson MJ et al (2014) Effective separation of Am (III) and Eu (III) from HNO3 solutions using CyMe4-BTPhen-functionalized silica-coated magnetic nanoparticles. Chem Commun 50:15082–15085

    Article  Google Scholar 

  • Albrecht M, Miecznikowski JR, Samuel A et al (2002) Chelated iridium (III) bis-carbene complexes as air-stable catalysts for transfer hydrogenation. Organometallics 21:3596–3604

    Article  Google Scholar 

  • Bai GY, Niu LB, Qiu MD et al (2010) Liquid-phase selective hydrogenation of benzophenone over ultrasonic-assisted Ni-La-B amorphous alloy catalyst. Catal Commun 12:212–216

    Article  Google Scholar 

  • Bai GY, Zhao Z, Niu LB et al (2012a) Effect of polymers and alkaline earth metals on the catalytic performance of Ni-B amorphous alloy in benzophenone hydrogenation. Catal Commun 23:34–38

    Article  Google Scholar 

  • Bai GY, Li F, Fan XX et al (2012b) Continuous hydrogenation of hydroquinone to 1, 4-cyclohexanediol over alkaline earth metal modified nickel-based catalysts. Catal Commun 17:126–130

    Article  Google Scholar 

  • Bai GY, Zhao Z, Dong HX et al (2014a) A NiPdB-PEG(800) amorphous alloy catalyst for the chemoselective hydrogenation of electron-deficient aromatic substrates. Chem CatChem 6:655–662

    Google Scholar 

  • Bai GY, Lan XW, Liu XF et al (2014b) An ammonium molybdate deposited amorphous silica coated iron oxide magnetic core-shell nanocomposite for the efficient synthesis of 2-benzimidazoles using hydrogen peroxide. Green Chem 16:3160–3168

    Article  Google Scholar 

  • Bejblová M, Zámostný P, Červený L et al (2005) Hydrodeoxygenation of benzophenone on Pd catalysts. Appl Catal, A 296:169–175

    Article  Google Scholar 

  • Branton PJ, Kaneko K, Setoyama N (1996) Physisorption of nitrogen by mesoporous modified Kanemite. Langmuir 12:599–600

    Article  Google Scholar 

  • Cao YY, Niu LB, Wen X et al (2016) Novel layered double hydroxide/oxide-coated nickel-based core-shell nanocomposites for benzonitrile selective hydrogenation: an interesting water switch. J Catal 339:9–13

    Article  Google Scholar 

  • Chen Y, Wang QH, Wang TM (2015) One-pot synthesis of M (M = Ag, Au)@SiO2 yolk-shell structures via an organosilane-assisted method: preparation, formation mechanism and application in heterogeneous catalysis. Dalton Trans 44:8867–8875

    Article  Google Scholar 

  • Cheng G, Zhang JL, Liu YL et al (2011) Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labelingw. Chem Commun 47:5732–5734

    Article  Google Scholar 

  • Choi YH, Lee W (2000) Effect of Ni loading and calcination temperature on catalyst performance and catalyst deactivation of Ni/SiO2 in the hydrodechlorination of 1, 2-dichloropropane into propylene. Catal Lett 67:155–161

    Article  Google Scholar 

  • Chu HL, Li N, Niu LB et al (2015) Continuous hydrogenation of toluene over a Sr and PEG(800) modified Ni/γ-Al2O3 catalyst. Chem Eng Technol 38:1585–1590

    Article  Google Scholar 

  • Cirtiu CM, Brisach-Wittmeyer A, Ménard H (2007) Comparative study of catalytic and electrocatalytic hydrogenation of benzophenone. Catal Commun 8:751–754

    Article  Google Scholar 

  • Dong HX, Zhao Z, Chu HL et al (2014) Effect of support and solvent on the activity and stability of NiCoB amorphous alloy in cinnamic acid hydrogenation. RSC Adv 4:19800–19805

    Article  Google Scholar 

  • Drouin SD, Amoroso D, Yap GP et al (2002) Multifunctional ruthenium catalysts: a novel borohydride-stabilized polyhydride complex containing the basic, chelating diphosphine 1, 4-bis (dicyclohexylphosphino) butane and its application to hydrogenation and murai catalysis. Organometallic 21:1042–1049

    Article  Google Scholar 

  • Du FL, Chen DW, Guo ZY et al (2012) Controlled synthesis and catalytic properties of mesoporous nickel–silica core–shell microspheres with tunable chamber structures. Mater Res Bull 47:2344–2348

    Article  Google Scholar 

  • Erokhin AV, Lokteva ES, Yermakov AY et al (2014) Phenylacetylene hydrogenation on Fe@C and Ni@C core–shell nanoparticles: about intrinsic activity of graphene-like carbon layer in H2 activation. Carbon 74:291–301

    Article  Google Scholar 

  • Feng WH, Dong HX, Niu LB et al (2015) A novel Fe3O4@nSiO2@NiPd-PVP@mSiO2 multi-shell core-shell nanocomposite for cinnamic acid hydrogenation in water. J Mater Chem A 3:19807–19814

    Article  Google Scholar 

  • Ferretti OA, Santori GF, Moglioni AG et al (2004) Hydrogenation of aromatic ketones with Pt-and Sn-modified Pt catalysts. Appl Catal A 269:215–223

    Article  Google Scholar 

  • Hou Y, Wang Y, He F et al (2004) Liquid phase hydrogenation of 2-ethylanthraquinone over La-doped Ni–B amorphous alloy catalysts. Mater Lett 58:1267–1271

    Article  Google Scholar 

  • Hur NH, Yoo JB, Kim HS et al (2014) Hollow nickel-coated silica microspheres containing rhodium nanoparticles for highly selective production of hydrogen from hydrous hydrazine. J Mater Chem A 2:18929–18937

    Article  Google Scholar 

  • Ikeda S, Ishino S, Harada T et al (2006) Ligand–free platinum nanoparticles encapsulated in a hollow porous carbon Shell as a highly active heterogeneous hydrogenation catalyst. Angew Chem Int Ed 45:7063–7066

    Article  Google Scholar 

  • Ju XP, Liu XF, Gao XJ et al (2016) Preparation of a four-layer magnetic core-shell nanocomposite for the selective hydrogenation of cinnamic acid. J Mater Sci 51:7669–7677

    Article  Google Scholar 

  • Li H, Zhang J et al (2007) Ultrasound-assisted preparation of a highly active and selective Co-B amorphous alloy catalyst in uniform spherical nanoparticles. J Catal 246:301–307

    Article  Google Scholar 

  • Li GH, Zhang YX, Xu SH et al (2011) Synthesis of mesoporous carbon capsules encapsulated with magnetite nanoparticles and their application in wastewater treatment. J Mater Chem 21:3664–3671

    Article  Google Scholar 

  • Li LF, Liu ZN, Yang HH et al (2012) Oil-field wastewater purification by magnetic separation technique using a novel magnetic nanoparticle. Cryogenics 52:699–703

    Article  Google Scholar 

  • Liu B, Qiao MH, Wang JQ et al. (2002) Highly selective amorphous Ni-Cr-B catalyst in 2-ethylanthraquinone hydrogenation to 2-ethylanthrahydroquinone. Chem Commun 1236–1237.

  • Liu HF, Ji SF, Yang H et al (2014) Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@Fe3O4 microspheres with enhanced mesoporous structure. Ultrason Sonochem 21:505–512

    Article  Google Scholar 

  • Mashimo T, Abdullaeva Z, Omurzak E et al (2012) Onion-like carbon-encapsulated Co, Ni, and Fe magnetic nanoparticles with low cytotoxicity synthesized by a pulsed plasma in a liquid. Carbon 50:1776–1785

    Article  Google Scholar 

  • Nabid MR, Bide Y, Niknezhad M (2014) Fe3O4–SiO2–P4VP pH-sensitive microgel for immobilization of nickel nanoparticles: an efficient heterogeneous catalyst for nitrile reduction in water. Chem CatChem 6:538–546

    Google Scholar 

  • Natesakhawat S, Watson RB, Wang X et al (2005) Deactivation characteristics of lanthanide-promoted sol–gel Ni/Al2O3 catalysts in propane steam reforming. J Catal 234:496–508

    Article  Google Scholar 

  • Park SE, Chang JS, Yoo JW et al (2000) Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane. J Catal 195:1–11

    Article  Google Scholar 

  • Sarkar A, Biswas SK, Pramanik P (2010) Design of a new nanostructure comprising esoporous ZrO2 shell and magnetite core (Fe3O4@mZrO2) and study of its phosphate ion separation efficiency. J Mater Chem 20:4417–4424

    Article  Google Scholar 

  • Song WG, Chen Z, Cui ZM et al (2012) Temperature-responsive smart nanoreactors: poly (Nisopropylacrylamide)-coated Au@mesoporous-SiO2 hollow nanospheres. Langmuir 28:13452–13458

    Article  Google Scholar 

  • Väyrynen J, Mikkola JP, Vainio H et al (2000) Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl Catal A 196:143–155

    Article  Google Scholar 

  • Venkatachalam G, Ramesh R, Mobin SM (2005) Synthesis, structure, catalytic transfer hydrogenation and biological activity of cyclometallated ruthenium (III) 2-(arylazo) phenolate complexes. J Organomet Chem 690:3937–3945

    Article  Google Scholar 

  • Vinod CP, Vysakh AB, Lazar A et al (2016) Phenylacene hydrogenation on Au@Ni bimetallic core-shell nanoparticles synthesized under mild conditions. Catal Sci Technol 6:708–712

    Article  Google Scholar 

  • Wen X, Cao YY, Qiao XL et al (2015a) Significant effect of base on the selectivity improvement in the hydrogenation of benzoic acid over NiZrB amorphous alloy supported on γ-Al2O3. Catal Sci Technol 5:3281–3287

    Article  Google Scholar 

  • Wen X, Zhao Z, Cao YY et al (2015b) Selective hydrogenation of ethyl benzoate over Ni-B amorphous alloys supported on γ-Al2O3. Res Chem Intermed 41:6351–6361

    Article  Google Scholar 

  • Wu L, Zhou RH, Li M et al (2014) Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nanohydroxyapatite focell imaging. Nanoscale 6:14319–14325

    Article  Google Scholar 

  • Yang JP, Zhang F, Chen YR et al (2011) Core-shell Ag@SiO2@mSiO2 mesopore nanocarriers for metal-enhanced fluoresence. Chem Commun 47:11618–11620

    Article  Google Scholar 

  • Yu YT, Rai P, Khan R et al (2014) Au@Cu2O core–shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance. Nanoscale 6:581–588

    Article  Google Scholar 

  • Zhao DY, Deng YH, Cai Y et al (2010) Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. J Am Chem Soc 132:8466–8473

    Article  Google Scholar 

  • Zhu J, Jia Y, Li M et al (2013) Carbon nanofibers grown on anatase washcoated cordierite monolith and its supported palladium catalyst for cinnamaldehyde hydrogenation. Ind Eng Chem Res 52:1224–1233

    Article  Google Scholar 

  • Zhu QQ, Maeno SH, Sasaki MH et al (2015) Monopersulfate oxidation of 2, 4, 6-tribromophenol using aniron (III)-tetrakis (p-sulfonatephenyl) porphyrin catalyst supported onan ionic liquid functionalized Fe3O4 coated with silica. Appl Catal B 163:459–466

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the National Natural Science Foundation of China (21376060 and 21676068) and the Natural Science Foundation of Hebei Province (B2014201024) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyi Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Xue Han and Wenhui Feng contribute the same to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Feng, W., Chu, X. et al. A novel core–shell nanocomposite Ni–Ca@mSiO2 for benzophenone selective hydrogenation. J Nanopart Res 19, 79 (2017). https://doi.org/10.1007/s11051-017-3768-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3768-z

Keywords

Navigation