Skip to main content

Advertisement

Log in

Photo-crosslinked hyaluronic acid coated upconverting nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hyaluronic acid (HA)-coated inorganic nanoparticles display enhanced interaction with the CD44 receptors which are overexpressed in many types of cancer cells. Here, we describe a modification of core-shell β-NaY0.80Yb0.18Er0.02F4@NaYF4 nanoparticles (UCNP) by HA derivative bearing photo-reactive groups. UCNP capped with oleic acid were firstly transferred to aqueous phase by an improved protocol using hydrochloric acid or lactic acid treatment. Subsequently, HA bearing furanacryloyl moieties (HA-FU) was adsorbed on the nanoparticle surface and crosslinked by UV irradiation. The crosslinking resulted in stable HA coating, and no polymer desorption was observed. As-prepared UCNP@HA-FU show a hydrodynamic diameter of about 180 nm and are colloidally stable in water and cell culture media. The cellular uptake by normal human fibroblasts and MDA MB-231 cancer cell line was investigated by upconversion luminescence imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arjonen A, Kaukonen R, Ivaska J (2011) Filopodia and adhesion in cancer cell motility. Cell Adhes Migr 5(5):421–430. doi:10.4161/cam.5.5.17723

    Article  Google Scholar 

  • Auria MD, Vantaggi A (1992) Photochemical dimerization of Methoxy substituted Cinnamic acid methyl esters. Tetrahedron 48(12):2523–2528. doi:10.1016/S0040-4020(01)88772-X

    Article  Google Scholar 

  • Beyazit S, Ambrosini S, Marchyk N, Palo E, Kale V, Soukka T, Bui BT S, Haupt K (2014) Versatile synthetic strategy for coating upconverting nanoparticles with polymer shells through localized Photopolymerization by using the particles as internal light sources. Angew Chem Int Ed 53(34):8919–8923. doi:10.1002/anie.201403576

    Article  Google Scholar 

  • Bhang SH, Won N, Lee T-J, Jin H, Nam J, Park J, Chung H et al (2009) Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. ACS Nano 3(6):1389–1398. doi:10.1021/nn900138d

    Article  Google Scholar 

  • Bobula T, Běťák J, Buffa R, Moravcová M, Klein P, Židek O, Chadimová V, Pospíšil R, Velebný V (2015) Solid-state Photocrosslinking of hyaluronan Microfibres. Carbohydr Polym 125(July):153–160. doi:10.1016/j.carbpol.2015.02.027

    Article  Google Scholar 

  • Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11(2):835–840. doi:10.1021/nl1041929

    Article  Google Scholar 

  • Bogdan N, Vetrone F, Roy R, Capobianco JA (2010) Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. J Mater Chem 20(35):7543–7550. doi:10.1039/C0JM01617A

    Article  Google Scholar 

  • Budijono SJ, Shan J, Yao N, Miura Y, Hoye T, Austin RH, Yiguang J, Prud’homme RK (2010) Synthesis of stable block-copolymer-protected NaYF4:Yb3+, Er3+ up-converting phosphor nanoparticles. Chem Mater 22(2):311–318. doi:10.1021/cm902478a

    Article  Google Scholar 

  • Cao T, Yang T, Gao Y, Yang Y, Hu H, Li F (2010) Water-soluble NaYF4:Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging. Inorg Chem Commun 13(3):392–394. doi:10.1016/j.inoche.2009.12.031

    Article  Google Scholar 

  • Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, Nanochemistry, and applications in theranostics. Chem Rev 114(10):5161–5214. doi:10.1021/cr400425h

    Article  Google Scholar 

  • Chen G, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li Z, Song J et al (2012) (α-NaYbF4:tm(3+))/CaF2 Core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6(9):8280–8287. doi:10.1021/nn302972r

    Article  Google Scholar 

  • Chen Z, Liu Z, Li Z, Enguo J, Gao N, Zhou L, Ren J, Xiaogang Q (2015) Upconversion Nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis. Biomaterials 39(January):15–22. doi:10.1016/j.biomaterials.2014.10.066

    Article  Google Scholar 

  • Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C (2008) Versatile synthesis strategy for carboxylic Acid − functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130(10):3023–3029. doi:10.1021/ja076151k

    Article  Google Scholar 

  • Cui S, Chen H, Zhu H, Tian J, Chi X, Qian Z, Achilefu S, Yueqing G (2012) Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light. J Mater Chem 22(11):4861–4873. doi:10.1039/C2JM16112E

    Article  Google Scholar 

  • Dong C, Korinek A, Blasiak B, Tomanek B, van Veggel FCJM (2012) Cation exchange: a facile method to make NaYF4:Yb,Tm-NaGdF4 Core–Shell nanoparticles with a thin, tunable, and uniform Shell. Chem Mater 24(7):1297–1305. doi:10.1021/cm2036844

    Article  Google Scholar 

  • Egerton PL, Hyde EM, Trigg J, Payne A, Beynon P, Mijovic MV, Reiser A (1981) Photocycloaddition in liquid ethyl Cinnamate and in ethyl Cinnamate glasses. The photoreaction as a probe into the micromorphology of the solid. J Am Chem Soc 103(13):3859–3863. doi:10.1021/ja00403a039

    Article  Google Scholar 

  • El-Dakdouki MH, Zhu DC, El-Boubbou K, Kamat M, Chen J, Li W, Huang X (2012) Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules 13(4):1144–1151. doi:10.1021/bm300046h

    Article  Google Scholar 

  • Gai S, Li C, Yang P, Lin J (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114(4):2343–2389. doi:10.1021/cr4001594

    Article  Google Scholar 

  • Huerta-Angeles G, Brandejsová M, Knotková K, Hermannová M, Moravcová M, Šmejkalová D, Velebný V (2016) Synthesis of photo-crosslinkable hyaluronan with tailored degree of substitution suitable for production of water resistant nanofibers. Carbohydr Polym 137:255–263. doi:10.1016/j.carbpol.2015.10.077

    Article  Google Scholar 

  • Hu H, Yu M, Li F, Chen Z, Gao X, Xiong L, Huang C (2008) Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chem Mater 20(22):7003–7009. doi:10.1021/cm801215t

    Article  Google Scholar 

  • Jiang G, Pichaandi J, Johnson NJJ, Burke RD, van Veggel FCJM (2012) An effective polymer cross-linking strategy to obtain stable dispersions of upconverting NaYF4 nanoparticles in buffers and biological growth Media for Biolabeling Applications. Langmuir 28(6):3239–3247. doi:10.1021/la204020m

    Article  Google Scholar 

  • Jin J, Yan-Juan G, Man CW-Y, Cheng J, Xu Z, Zhang Y, Wang H, Lee VH-Y, Cheng SH, Wong W-T (2011) Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano 5(10):7838–7847. doi:10.1021/nn201896m

    Article  Google Scholar 

  • Johnson NJJ, Korinek A, Dong C, van Veggel FCJM (2012) Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J Am Chem Soc 134(27):11068–11071. doi:10.1021/ja302717u

    Article  Google Scholar 

  • Lee M-Y, Yang JA, Jung HS, Beack S, Choi JE, Hur W, Koo H, Kim K, Yoon SK, Hahn SK (2012) Hyaluronic acid-gold nanoparticle/interferon α complex for targeted treatment of hepatitis C virus infection. ACS Nano 6(11):9522–9531. doi:10.1021/nn302538y

    Article  Google Scholar 

  • Li X, Shen D, Yang J, Yao C, Che R, Zhang F, Zhao D (2013) Successive layer-by-layer strategy for multi-Shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties. Chem Mater 25(1):106–112. doi:10.1021/cm3033498

    Article  Google Scholar 

  • Li Z, Zhang Y (2008) An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19(34):345606. doi:10.1088/0957-4484/19/34/345606

    Article  Google Scholar 

  • Liu K, Liu X, Zeng Q, Zhang Y, Langping T, Liu T, Kong X et al (2012) Covalently assembled NIR Nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano 6(5):4054–4062. doi:10.1021/nn300436b

    Article  Google Scholar 

  • Mrazek J, Pospisilova M, Svozil V, Cadek O, Nesporova K, Sulakova R, Brandejsova M, Vranova J, Velebny V (2016) Widefield imaging of upconverting nanoparticles on epifluorescence microscopes adapted for laser illumination with top-hat profile. J Biomed Opt 21(5):56007. doi:10.1117/1.JBO.21.5.056007

    Article  Google Scholar 

  • Pospisilova M, Mrazek J, Matuska V, Kettou S, Dusikova M, Svozil V, Nesporova K, Huerta-Angeles G, Vagnerova H, Velebny V (2015) Oleyl-hyaluronan micelles loaded with upconverting nanoparticles for bio-imaging. J Nanopart Res 17(9):1–11. doi:10.1007/s11051-015-3186-z

    Article  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/nmeth.2019

    Article  Google Scholar 

  • Sedlmeier A, Gorris HH (2015) Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev 44(6):1526–1560. doi:10.1039/C4CS00186A

    Article  Google Scholar 

  • Shi D, Matsusaki M, Kaneko T, Akashi M (2008) Photo-cross-linking and cleavage induced reversible size change of bio-based nanoparticles. Macromolecules 41(21):8167–8172. doi:10.1021/ma800648e

    Article  Google Scholar 

  • Suter JD, Pekas NJ, Berry MT, Stanley May P (2014) Real-time-monitoring of the synthesis of β-NaYF4:17% Yb,3% Er nanocrystals using NIR-to-visible upconversion luminescence. J Phys Chem C 118(24):13238–13247. doi:10.1021/jp502971j

    Article  Google Scholar 

  • Tian G, Zheng X, Zhang X, Yin W, Yu J, Wang D, Zhang Z, Yang X, Zhanjun G, Zhao Y (2015) TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials 40(February):107–116. doi:10.1016/j.biomaterials.2014.11.022

    Article  Google Scholar 

  • Wang X, Yang C-X, Chen J-T, Yan X-P (2014) A dual-targeting upconversion Nanoplatform for two-color fluorescence imaging-guided photodynamic therapy. Anal Chem 86(7):3263–3267. doi:10.1021/ac500060c

    Article  Google Scholar 

  • Yang D, Ma P’a, Hou Z, Cheng Z, Li C, Lin J (2015) Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem Soc Rev 44(6):1416–1448. doi:10.1039/C4CS00155A

    Article  Google Scholar 

  • Yin M, Enguo J, Chen Z, Li Z, Ren J, Xiaogang Q (2014) Upconverting nanoparticles with a mesoporous TiO2 Shell for near-infrared-triggered drug delivery and synergistic targeted cancer therapy. Chem Eur J 20(43):14012–14017. doi:10.1002/chem.201403733

    Article  Google Scholar 

  • Zhang Q, Song K, Zhao J, Kong X, Sun Y, Liu X, Zhang Y, Zeng Q, Zhang H (2009) Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF4:Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic. J Colloid Interface Sci 336(1):171–175. doi:10.1016/j.jcis.2009.04.024

    Article  Google Scholar 

  • Zhou A, Wei Y, Wu B, Chen Q, Xing D (2012) Pyropheophorbide a and c(RGDyK) Comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy. Mol Pharm 9(6):1580–1589. doi:10.1021/mp200590y

    Article  Google Scholar 

  • Zhou H-P, Xu C-H, Sun W, Yan C-H (2009) Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications. Adv Funct Mater 19(24):3892–3900. doi:10.1002/adfm.200901458

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Hana Vagnerova and Zuzana Tomickova for help with in vitro assays and cell staining; Tomas Bobula for help with UV-crosslinking reactions; Ondrej Zidek and Filip Mika for electron microscopy imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Mrazek.

Ethics declarations

The present study was financially supported by Contipro a.s. (Czech Republic).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 6737 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrazek, J., Kettou, S., Matuska, V. et al. Photo-crosslinked hyaluronic acid coated upconverting nanoparticles. J Nanopart Res 19, 44 (2017). https://doi.org/10.1007/s11051-017-3751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3751-8

Keywords

Navigation