Skip to main content
Log in

Cu–CeO2 nanocomposites: mechanochemical synthesis, physico-chemical properties, CO-PROX activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Catalytic systems designated for preferential oxidation of CO in the presence of H2 are prepared by ball milling of Cu and CeO2, a simple and cheap one-step process to synthesize such catalysts. It is found that after 60 min of milling, a mixture of 8 wt.% Cu–CeO2 powders exhibits CO conversion of 96% and CO selectivity of about 65% at 438 K. Two active oxygen states, which are not observed in case of pure CeO2, were detected in the nanocomposite lattice and attributed to the presence of Cu in surface sites as well as in subsurface bulk sites. Correspondingly, oxidation of CO to CO2 was found to occur in a two-stage process with T max ≈ 395/460 K, and oxidation of H2 to H2O likewise in a two-stage process with T max ≈ 465/490 K. The milled powder consists of CeO2 crystallites sized 8–10 nm agglomerated to somewhat larger aggregates, with Cu dispersed on the surface of the CeO2 crystallites, and to a lesser extent present as Cu2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aboukaïs A, Abi-Aad E, Bennani A, Cachaty C, Bonelle J-P (1992) Highly resolved electron paramagnetic resonance spectrum of copper (II) ion pairs in CuCe oxide. J Chem Soc Faraday Trans 88:615–620

    Article  Google Scholar 

  • Amin NAS, Tan EF, Manan ZA (2003) Selective reduction of NOx with C3H6 over Cu and Cr promoted CeO2 catalysts. Appl Catal B 43:57–69

    Article  Google Scholar 

  • Arango-Díaz A, Moretti E, Talon A, Storaro L, Lenarda M, Núñez P, Marrero-Jerez J, Jiménez-Jiménez J, Jiménez-López A, Rodríguez-Castellón E (2014) Preferential CO oxidation (CO-PROX) catalyzed by CuO supported on nanocrystalline CeO2 prepared by a freeze-drying method. Appl Catal A 477:54–63

    Article  Google Scholar 

  • Bion N, Epron F, Moreno M, Mariño F, Duprez D (2008) Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over noble metals and transition metal oxides: advantages and drawbacks. Top Catal 51:76–88

    Article  Google Scholar 

  • Boaro M, Vicario M, de Leitenburg C, Dolcetti G, Trovarelli A (2003) The use of temperature-programmed and dynamic/transient methods in catalysis: characterization of ceria-based, model three-way catalysts. Catal Today 77:407–417

    Article  Google Scholar 

  • Carrasco J, Lopez N, Illas F, Freund H-J (2006) Bulk and surface oxygen vacancy formation and diffusion in single crystals, ultrathin films, and metal grown oxide structures. J Chem Phys 125:074711

    Article  Google Scholar 

  • Ciureanu M, Wang H (2000) Electrochemical impedance study of anode CO-poisoning in PEM fuel cells. J New Mat for Electrochem Systems 3:107–119

    Google Scholar 

  • Denk MK (1999) Inorganic chemistry II: organometallics part 2: transition metals. Springer, Heidelberg

    Google Scholar 

  • Di Benedetto A, Landi G, Lisi L, Russo G (2013) Role of CO2 on CO preferential oxidation over CuO/CeO2 catalyst. Appl Catal B 142-143:69–177

    Article  Google Scholar 

  • Firsova AA, Morozova OS, Leonov AV, Streletskii AN, Korchak VN (2014) Mechanochemical synthesis of CuO–CeO2 catalysts for the preferential oxidation of CO in the presence of H2. Kinet Catal 55:77–785

    Article  Google Scholar 

  • Gamarra D, Belver C, Fernández-García M, Martínez-Arias A (2007a) Selective CO oxidation in excess H2 over copper-ceria catalysts: identification of active entities/species. J Am Chem Soc 129:12064–12065

    Article  Google Scholar 

  • Gamarra D, Martínez-Arias A (2009) Preferential oxidation of CO in rich H2 over CuO/CeO2: operando-DRIFTS analysis of deactivating effect of CO2 and H2O. J Catal 263:189–195

    Article  Google Scholar 

  • Gamarra D, Munuera G, Hungria AB, Fernández-García M, Conesa JC, Midgley PA, Wang XQ, Hanson JC, Rodriguez JA, Martínez-Arias A (2007b) Structure-activity relationship in nanostructured copper-ceria-based preferential CO oxidation catalysts. J Phys Chem C 111:11026–11038

    Article  Google Scholar 

  • Harrison PG, Ball IK, Azelee W, Daniell W, Goldfarb D (2000) Nature and surface redox properties of copper (II)-promoted cerium (IV) oxide CO-oxidation catalysts. Chem Mater 12:3715–3725

    Article  Google Scholar 

  • Hua C, Zhu Q, Jiang Z, Zhang Y, Wang Y (2008) Preparation and formation mechanism of mesoporous CuO–CeO2 mixed oxides with excellent catalytic performance for removal of VOCs. Microporous Mesoporous Mater 113:427–434

    Article  Google Scholar 

  • Jung WY, Song YI, Hong S-S (2013) Complete combustion of benzene over CuO/CeO2 catalysts prepared by various methods. Clean Technol 19:28–133

    Article  Google Scholar 

  • Knacke O, Kubaschewski O, Hesselmann K (1991) Thermochemical properties if inorganic substances. Springer, Berlin

    Google Scholar 

  • Knauth P, Schwitzgebel G, Tschöpe A, Villain S (1998) Emf measurements on nanocrystalline copper-doped ceria. J Solid State Chem 140:295–299

    Article  Google Scholar 

  • Kosmambetova GR (2014) Structural organization of nanophase catalysts for preferential CO oxidation. Theor Exper Chem 50:265–281

    Article  Google Scholar 

  • Kydd R, Ferri D, Hug P, Scott J, Teoh WY, Amal R (2011) Temperature-induced evolution of reaction sites and mechanisms during preferential oxidation of CO. J Catal 277:64–71

    Article  Google Scholar 

  • Kydd R, Teoh WY, Wong K, Wang Y, Scott J, Zeng Q-H, Yu A-B, Zou J, Amal R (2009) Flame-synthesized ceria-supported copper dimers for preferential oxidation of CO. Adv Funct Mater 19:369–377

    Article  Google Scholar 

  • Lu Z, Yang Z, He B, Castleton C, Hermansson K (2011) Cu-doped ceria: oxygen vacancy formation made easy. Chem Phys Lett 510:60–66

    Article  Google Scholar 

  • Martínez-Arias A, Gamarra D, Fernández-García M, Hornés A, Belver C (2009a) Spectroscopic study on the nature of active entities in copper–ceria CO-PROX catalysts. Top Catal 52:1425–1432

    Article  Google Scholar 

  • Martínez-Arias A, Gamarra D, Fernández-García M, Horne A, Bera P, Koppány Z, Schay Z (2009b) Redox-catalytic correlations in oxidised copper-ceria CO-PROX catalysts. Catal Today 143:211–217

    Article  Google Scholar 

  • Martínez-Arias A, Gamarra D, Hungría AB, Fernández-García M, Munuera G, Hornés A, Bera P, Conesa JC, Cámara AL (2013) Characterization of active sites/entities and redox/catalytic correlations in copper-ceria-based catalysts for preferential oxidation of CO in H2-rich streams. Catalysts 3:378–400

    Article  Google Scholar 

  • McFarland EW, Metiu H (2013) Catalysis by doped oxides. Chem Rev 113:4391–4427

    Article  Google Scholar 

  • Monte M, Gamarra D, López Cámara A, Rasmussen SB, Gyorffy N, Schay Z, Martínez-Arias A, Conesa JC (2014) Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: performance as a function of the copper coverage and exposed face present in the CeO2 support. Catal Today 229:104–113

    Article  Google Scholar 

  • Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041

    Article  Google Scholar 

  • Paier J, Penschke C, Sauer J (2013) Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev 113:3949–3985

    Article  Google Scholar 

  • Polster CS, Nair H, Baertsch CD (2009) Study of active sites and mechanism responsible for highly selective CO oxidation in H2 rich atmospheres on a mixed Cu and Ce oxide. J Catal 266:308–319

    Article  Google Scholar 

  • Prasad R, Rattan G (2010) Preparation methods and applications of CuO-CeO2 catalysts: a short review. Bull Chem React Eng & Catal 5:7–30

    Article  Google Scholar 

  • Qi X, Flytzani-Stephanopoulos M (2004) Activity and stability of Cu-CeO2 catalysts in high-temperature water-gas shift for fuel-cell applications. Ind Eng Chem Res 43:3055–3062

    Article  Google Scholar 

  • Rao KN, Venkataswamy P, Reddy BM (2011) Structural characterization and catalytic evaluation of supported copper–ceria catalysts for soot oxidation. Ind Eng Chem Res 50:11960–11969

    Article  Google Scholar 

  • Shelekhov EV, Sviridova TA (2000) Programs for X-ray analysis of polycrystals. Met Sci Heat Treat 42:309–317

    Article  Google Scholar 

  • Skårman B, Grandjean D, Benfield RE, Hinz A, Andersson A, Wallenberg LR (2002) Carbon monoxide oxidation on nanostructured CuOx/CeO2 composite particles characterized by HREM, XPS, XAS, and high-energy diffraction. J Catal 211:119–133

    Google Scholar 

  • Szabová L, Camellone MF, Huang M, Matolín V, Fabris S (2010) Thermodynamic, electronic and structural properties of Cu/CeO2 surfaces and interfaces from first-principles DFT + U calculations. J Chem Phys 133:234705

    Article  Google Scholar 

  • Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2005) CuO/CeO2 catalysts: redox features and catalytic behaviors. Appl Catal A 288:116–125

    Article  Google Scholar 

  • Wang JB, Shih W-H, Huang T-J (2000) Study of Sm2O3-doped CeO2/Al2O3-supported copper catalyst for CO oxidation. Appl Catal A 203:191–199

    Article  Google Scholar 

  • Wang W-W, Du P-P, Zou S-H, He H-Y, Wang R-X, Jin Z, Shi S, Huang Y-Y, Si R, Song Q-S, Jia C-J, Yan C-H (2015) Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catal 5:2088–2099

    Article  Google Scholar 

  • Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martínez-Arias A, Fernández-García M (2005) Unusual physical and chemical properties of Cu in Ce1-xCuxO2 oxides. J Phys Chem B 109:19595–19603

    Article  Google Scholar 

  • Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martínez-Arias A, Fernández-García M (2006) In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. J Phys Chem B 110:428–434

    Article  Google Scholar 

  • Yang Z, He B, Lu Z, Hermansson K (2010) Physisorbed, chemisorbed, and oxidized CO on highly active Cu-CeO2 (111). J Phys Chem C 114:4486–4494

    Article  Google Scholar 

  • Yang Z, Wang Q, Wei S (2011) The synergistic effects of the Cu–CeO2 (111) catalysts on the adsorption and dissociation of water molecules. Phys Chem Chem Phys 13:9363–9373

    Article  Google Scholar 

  • Yang L, Zhou S, Ding T, Meng M (2014) Superior catalytic performance of non-stoichiometric solid solution Ce1 – x CuxO2 − δ supported copper catalysts used for CO preferential oxidation. Fuel Process Technol 124:155–164

    Article  Google Scholar 

  • Zeng S, Zhang W, Śliwa M, Su H (2013) Comparative study of CeO2/CuO and CuO/CeO2 catalysts on catalytic performance for preferential CO oxidation. Int J Hydrogen Energ 38:3597–3605

    Article  Google Scholar 

  • Zhou H, Tang C, Tong M, Gu Z, Yao Q, Rao G (2012) Experimental investigation of the Ce–Cu phase diagram. J Alloys Comp 511:262–267

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Russian Foundation for Basic Research Projects № 16-03-00178 and 16-03-00330, program P-16 of Presidium of RAS, Government of the Russian Federation (act 211 and agreement № 02.A03.21.0006). The XPS measurements were supported by the Ministry of Education and Science of Russian Federation (Project RFMEFI 58714X0002). The Alexander von Humboldt foundation is gratefully acknowledged for funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Borchers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borchers, C., Martin, M.L., Vorobjeva, G.A. et al. Cu–CeO2 nanocomposites: mechanochemical synthesis, physico-chemical properties, CO-PROX activity. J Nanopart Res 18, 344 (2016). https://doi.org/10.1007/s11051-016-3640-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3640-6

Keywords

Navigation