Skip to main content
Log in

Effect of calcination temperature on the structure and performance of CeOx–MnOx/TiO2 nanoparticles for the catalytic combustion of chlorobenzene

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, MnOx/TiO2, CeOx/TiO2, and CeOx–MnOx/TiO2 catalysts were prepared by the homogeneous precipitation method. The effect of calcination temperature on the structure and catalytic performance of CeOx–MnOx/TiO2 mixed oxide catalyst in the catalytic combustion of chlorobenzene was investigated. The samples were characterized by X-ray diffraction, nitrogen adsorption–desorption, transmission electron microscopy, Raman spectra, hydrogen temperature-programmed reduction, and X-ray photoelectron spectroscopy. The results indicate that calcination significantly affect the activity of the prepared catalysts. When calcined at a low temperature such as 400 °C, Ce, and Mn species form a solid solution of MnCeOx in the catalyst, thus locating the O atoms in a perturbed chemical surrounding in the catalysts. This increases the mobility of the O atoms during the reaction, probably contributing to the highest catalytic activity of CeOx–MnOx/TiO2 among all the tested catalysts. However, a further increase in the calcination temperature decreased the performance of the catalyst for the catalytic combustion of chlorobenzene. This is probably because of a reduction in surface chemisorbed oxygen concentration, a decrease in the interface area between metal oxides and MnCeOx caused by the isolation of MnOx or CeO2 from MnCeOx, and a decrease in the specific surface area of CeOx–MnOx/TiO2 catalyst due to the sintering of catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguero FN, Scian A, Barbero BP, Cadús LE (2008) Combustion of volatile organic compounds over supported manganese oxide: influence of the support, the precursor and the manganese loading. Catal Today 133–135:493–501

    Article  Google Scholar 

  • Arena F, Trunfio G, Negro J, Fazio B, Spadaro L (2007) Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel “redox-precipitation” route. Chem Mater 19:2269–2276

    Article  Google Scholar 

  • Bertinchamps F, Grégoire C, Gaigneaux EM (2006) Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics part I: identification of the optimal main active phases and supports. Appl Catal B 66:1–9

    Article  Google Scholar 

  • Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732

    Article  Google Scholar 

  • Centi G, Ciambelli P, Perathoner S, Russo P (2002) Environmental catalysis: trends and outlook. Catal Today 75:3–15

    Article  Google Scholar 

  • Cho CH, Ihm SK (2002) Development of new vanadium-based oxide catalysts for decomposition of chlorinated aromatic pollutants. Environ Sci Technol 36:1600–1606

    Article  Google Scholar 

  • Dai QG, Wang XY, Lu GZ (2008) Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Appl Catal B 81:192–202

    Article  Google Scholar 

  • Dai Y, Wang XY, Li D, Dai QG (2011) Catalytic combustion of chlorobenzene over Mn–Ce–La–O mixed oxide catalysts. J Hazard Mater 188:132–139

    Article  Google Scholar 

  • Dai Y, Wang XY, Dai QG, Li D (2012) Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene. Appl Catal B 111–112:141–149

    Article  Google Scholar 

  • Fazio B, Spadaro L, Trunfio G, Negro J, Arena F (2011) Raman scattering of MnOx–CeOx composite catalysts: structural aspects and laser-heating effects. J Raman Spectrosc 42:1583–1588

    Article  Google Scholar 

  • He F, Li JL, Li T, Li GX (2014a) Solvothermal synthesis of mesoporous TiO2: the effect of morphology, size and calcination progress on photocatalytic activity in the degradation of gaseous benzene. Chem Eng J 237:312–321

    Article  Google Scholar 

  • He F, Zhang C, Zhou D, Cheng L, Li T, Li GX (2014b) Mesoporous core–shell TiO2 walnuts for photocatalysts and photodetectors with improved performances. Dalton Trans 43:7599–7607

    Article  Google Scholar 

  • Hetrick CE, Lichtenberger J, Amiridis MD (2008) Catalytic oxidation of chlorophenol over V2O5/TiO2 catalysts. Appl Catal B 77:255–263

    Article  Google Scholar 

  • Huang H, Dai QG, Wang XY (2014) Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Appl Catal B 158–159:96–105

    Article  Google Scholar 

  • Ikryannikova LN, Aksenov AA, Markayan GL, Muravieva GP, Kostyuk BG, Kharlanov AN, Linina EV (2001) The redox treatments influence on the structure and properties of M2O3–CeO2–ZrO2 (M = Y, La) solid solutions. Appl Catal A 210:225–235

    Article  Google Scholar 

  • Jiang MH, Wang BW, Lv J, Wang HY, Li ZH, Ma XB, Qin SD, Sun Q (2013) Effect of sulfidation temperature on the catalytic activity of MoO3/CeO2–Al2O3 toward sulfur-resistant methanation. Appl Catal A 466:224–232

    Article  Google Scholar 

  • Jung CR, Han J, Nam SW, Lim TH, Hong SA, Lee HI (2004) Selective oxidation of CO over CuO–CeO2 catalyst: effect of calcination temperature. Catal Today 93–95:183–190

    Article  Google Scholar 

  • Krishnamoorthy S, Rivas JA, Amiridis MD (2000) Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J Catal 193:264–272

    Article  Google Scholar 

  • Lee YN, Lago RM, Fierro JLG, Cortés V, Sapina F, Marinez E (2001a) Surface properties and catalytic performance for ethane combustion of La1−x K x MnO3+δ perovskites. Appl Catal A 207:17–24

    Article  Google Scholar 

  • Lee YN, Lago RM, Fierro JLG, González J (2001b) Hydrogen peroxide decomposition over Ln1−x A x MnO3 (Ln = La or Nd and A = K or Sr) perovskites. Appl Catal A 215:245–256

    Article  Google Scholar 

  • Lee SM, Lee HH, Hong SC (2014) Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2. Appl Catal A 470:189–198

    Article  Google Scholar 

  • Li JW, Zhao PZ, Liu ST (2014) SnOx–MnOx–TiO2 catalysts with high resistance to chlorine poisoning for low-temperature chlorobenzene oxidation. Appl Catal A 482:363–369

    Article  Google Scholar 

  • Lichtenberger J, Amiridis MD (2004) Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J Catal 223:296–308

    Article  Google Scholar 

  • Liu Y, Luo MF, Wei ZB, Xin Q, Ying PL, Li C (2001) Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Appl Catal B 29:61–67

    Article  Google Scholar 

  • Liu YY, Hayakawa T, Suzuki K, Hamakawa S, Tsunoda T, Ishii T, Kumagai M (2002) Highly active copper/ceria catalysts for steam reforming of methanol. Appl Catal A 223:137–145

    Article  Google Scholar 

  • Liu FD, He H, Ding Y, Zhang CB (2009) Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Appl Catal B 93:194–204

    Article  Google Scholar 

  • Liu ZG, Chai SH, Binder A, Li YY, Ji LT, Dai S (2013) Influence of calcination temperature on the structure and catalytic performance of CuOx–CoOy–CeO2 ternary mixed oxide for CO oxidation. Appl Catal A 451:282–288

    Article  Google Scholar 

  • Liu ZM, Zhu JZ, Li JH, Ma LL, Woo SI (2014) Novel Mn–Ce–Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3. ACS Appl Mater Interfaces 6:14500–14508

    Article  Google Scholar 

  • Machida M, Uto M, Kurogi D, Kijima T (2000) MnOx–CeO2 binary oxides for catalytic NOx sorption at low temperatures. Sorptive removal of NOx. Chem Mater 12:3158–3164

    Article  Google Scholar 

  • Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S (2004) Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. J Catal 227:282–296

    Article  Google Scholar 

  • Morales MR, Barbero BP, Cadús LE (2006) Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts. Appl Catal B 67:229–236

    Article  Google Scholar 

  • Nie AM, Yang HS, Li Q, Fan XY, Qiu FM, Zhang XB (2011) Catalytic oxidation of chlorobenzene over V2O5/TiO2-carbon nanotubes composites. Ind Eng Chem Res 50:9944–9948

    Article  Google Scholar 

  • Ren TZ, Xu PB, Deng QF, Yuan ZY (2013) Mesoporous Ce1−x Mn x O2 mixed oxides with CuO loading for the catalytic total oxidation of propane. React Kinet Mech Catal 110:405–420

    Article  Google Scholar 

  • Seipenbusch M, Friedlander K (2004) Catalytic soot oxidation in microscale experiments: simulation of interactions between co-deposited graphitic nanoparticle agglomerates and platinum nanoparticles. J Nanopart Res 6:605–611

    Article  Google Scholar 

  • Shehata N, Meehan K, Hudait M, Jain N (2012) Control of oxygen vacancies and Ce+3 concentrations in doped ceria nanoparticles via the selection of lanthanide element. J Nanopart Res 14:1173–1183

    Article  Google Scholar 

  • Shen S, Wang XL, Chen T, Feng ZC, Li C (2014) Transfer of photoinduced electrons in anatase–rutile TiO2 determined by time-resolved mid-Infrared spectroscopy. J Phys Chem C 118:12661–12668

    Article  Google Scholar 

  • Tang XF, Li YG, Huang XM, Xu YD, Zhu HQ, Wang JG, Shen WJ (2006) MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl Catal B 62:265–273

    Article  Google Scholar 

  • Tang YX, Wee PX, Lai YK, Wang XP, Gong DG, Kanhere PD, Lim T, Dong ZL, Chen Z (2012) Hierarchical TiO2 nanoflakes and nanoparticles hybrid structure for improved photocatalytic activity. J Phys Chem C 116:2772–2780

    Article  Google Scholar 

  • Terribile D, Trovarelli A, Leitenburg C, Primavera A, Dolcetti G (1999) Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions. Catal Today 47:133–140

    Article  Google Scholar 

  • Venkataswamy P, Jampaiah LF, Alxneit I, Reddy B (2015) Structural properties of alumina supported Ce–Mn solid solutions and their markedly enhanced catalytic activity for CO oxidation. Appl Surf Sci 349:299–309

    Article  Google Scholar 

  • Wang XY, Kang Q, Li D (2009) Catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts. Appl Catal B 86:166–175

    Article  Google Scholar 

  • Wang Z, Yang M, Shen G, Liu H, Chen Y, Wang Q (2014) Catalytic removal of benzene over CeO2–MnOx composite oxides with rod-like morphology supporting PdO. J Nanopart Res 16:2367–2379

    Article  Google Scholar 

  • Wang JH, Dong XS, Wang YJ, Li YD (2015) Effect of the calcination temperature on the performance of a CeMoOx catalyst in the selective catalytic reduction of NOx with ammonia. Catal Today 245:10–15

    Article  Google Scholar 

  • Wu ZB, Jiang BQ, Liu Y, Zhao WR, Guan BH (2007) Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol–gel method. J Hazard Mater 145:488–494

    Article  Google Scholar 

  • Yu DQ, Liu Y, Wu ZB (2010) Low-temperature catalytic oxidation of toluene over mesoporous MnOx–CeO2/TiO2 prepared by sol–gel method. Catal Commun 1:788–791

    Article  Google Scholar 

  • Zhang Y, Beckers J, Bliek A (2002) Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum–manganese oxides. Appl Catal A 235:79–92

    Article  Google Scholar 

  • Zhou N, He B, Wang X, Hu Z (2014) Preparation and characterization of Au@TiO2 core–shell hollow nanoparticles with CO oxidation performance. J Nanopart Res 16:2676–2687

    Article  Google Scholar 

  • Zimmer P, Tschöpe A, Birringer R (2002) Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst. J Catal 205:339–345

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the funding support of Science & Technology program of Wuhan Science and Technology Bureau (2015060202010121), the National Natural Science Foundation of China (No. 21471120), the International Cooperation Foundation of Hubei Province (2012IHA00201), the Educational Commission of Hubei Province of China (T201306), and the Scientific Research Foundation of Wuhan Institute of Technology (K201515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Chen, Y., Zhao, P. et al. Effect of calcination temperature on the structure and performance of CeOx–MnOx/TiO2 nanoparticles for the catalytic combustion of chlorobenzene. J Nanopart Res 18, 119 (2016). https://doi.org/10.1007/s11051-016-3428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3428-8

Keywords

Navigation