Skip to main content
Log in

Cyclodextrin-grafted barium titanate nanoparticles for improved dispersion and stabilization in water-based systems

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ceramic nanoparticles with piezoelectric properties, such as BaTiO3 (BT), constitute a promising approach in the fields of nanocomposite materials and biomaterials. In the latter case, to be successful in their preparation, the drawback of their fast aggregation and practically null stability in water has to be overcome. The objective of this investigation has been the surface functionalization of BaTiO3 nanoparticles with cyclodextrins (CDs) as a way to break the aggregation and improve the stability of the nanoparticles in water solution, preventing and minimizing their fast precipitation. As a secondary goal, we have achieved extra-functionality of the nanoparticles, bestowed from the hydrophobic cavity of the macrocycle, which is able to lodge guest molecules that can form inclusion complexes with the oligosaccharide. The nanoparticle functionalization has been fully tracked and characterized, and the cytotoxicity of the modified nanoparticles with fibroblasts and pre-osteoblasts cell lines has been assessed with excellent results in a wide range of concentrations. The modified nanoparticles were found to be suitable for the easy preparation of nanocomposite hydrogels, via dispersion in hydrophilic polymers of typical use in biomedical applications (PEG, Pluronics, and PEO), and further processed in the form of films via water casting, showing very good results in terms of homogeneity in the dispersion of the filler. Likewise, as examples of application and with the aim of exploring a different range of nanocomposites, rhodamine B was included in the macrocycles as a model molecule, and films prepared from a thermoplastic matrix (EVA) via high-energy ball milling have been tested by impedance spectroscopy to discuss their dielectric properties, which indicated that even small modifications in the surface of the nanoparticles generate a different kind of interaction with the polymeric matrix. The CD-modified nanoparticles are thus suitable for easy preparation of the water-based nanocomposites either as hydrogels or as nanocomposites based on thermoplastic matrices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baxter FR, Turner IG, Bowen CR et al (2009) An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells. J Mater Sci Mater Med 20:1697–1708. doi:10.1007/s10856-009-3734-0

    Article  Google Scholar 

  • Beier CW, Cuevas MA, Brutchey RL (2010) Effect of surface modification on the dielectric properties of BaTiO3 nanocrystals. Langmuir 26:5067–5071. doi:10.1021/la9035419

    Article  Google Scholar 

  • Blanco-Lopez MC, Rand B, Riley FL (1997) The properties of aqueous phase suspensions of barium titanate. J Eur Ceram Soc 17:281–287. doi:10.1016/S0955-2219(96)00116-1

    Article  Google Scholar 

  • Chang S-J, Liao W-S, Ciou C-J et al (2009) An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability. J Colloid Interface Sci 329:300–305. doi:10.1016/j.jcis.2008.10.011

    Article  Google Scholar 

  • Chaudhary YS, Bhatta UM, Khushalani D (2011) Octyl-β-d-glucopyranoside mediated synthesis of nanocrystalline BaTiO3 using a single-source precursor. J Mater Res 23:842–848. doi:10.1557/JMR.2008.0102

    Article  Google Scholar 

  • Choudhury A (2012) Preparation, characterization and dielectric properties of polyetherimide nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Polym Int 61:696–702. doi:10.1002/pi.4181

    Article  Google Scholar 

  • Ciofani G, Danti S, Moscato S et al (2010) Preparation of stable dispersion of barium titanate nanoparticles: potential applications in biomedicine. Colloids Surf B Biointerfaces 76:535–543. doi:10.1016/j.colsurfb.2009.12.015

    Article  Google Scholar 

  • Čulić-Viskota J, Dempsey WP, Fraser SE, Pantazis P (2012) Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish. Nat Protoc 7:1618–1633. doi:10.1038/nprot.2012.087

    Article  Google Scholar 

  • Dempsey C, Lee I, Cowan KR, Suh J (2013) Coating barium titanate nanoparticles with polyethylenimine improves cellular uptake and allows for coupled imaging and gene delivery. Colloids Surf B Biointerfaces 112:108–112. doi:10.1016/j.colsurfb.2013.07.045

    Article  Google Scholar 

  • FarrokhTakin E, Ciofani G, Gemmi M et al (2012) Synthesis and characterization of new barium titanate core–gold shell nanoparticles. Colloids Surfaces A Physicochem Eng Asp 415:247–254. doi:10.1016/j.colsurfa.2012.09.021

    Article  Google Scholar 

  • Feng J, Yuan H, Zhang X (1997) Promotion of osteogenesis by a piezoelectric biological ceramic. Biomaterials 18:1531–1534

    Article  Google Scholar 

  • Gaharwar AK, Schexnailder PJ, Schmidt G (2011) Nanocomposite polymer biomaterials for tissue repair of bone and cartilage: a material science perspective. Nanobiomaterials Handb. doi:10.1201/b10970

    Google Scholar 

  • Gaharwar AK, Mihaila SM, Swami A et al (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25:3329–3336. doi:10.1002/adma.201300584

    Article  Google Scholar 

  • Gao J, Shi H, Dong H et al (2015) Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis. J Nanoparticle Res 17:286. doi:10.1007/s11051-015-3090-6

    Article  Google Scholar 

  • Gonzalez-Gaitano G, Crespo A, Tardajos G (2000) Thermodynamic investigation (volume and compressibility) of the systems -cyclodextrin + n-alkyltrimethylammonium bromides + water. J Phys Chem B 104:1869–1879

    Article  Google Scholar 

  • González-Gaitano G, Rodríguez P, Isasi JR et al (2002) The aggregation of cyclodextrins as studied by photon correlation spectroscopy. J Incl Phenom 44:101–105. doi:10.1023/A:1023065823358

    Article  Google Scholar 

  • Hiroki A, Laverne JA (2005) Decomposition of hydrogen peroxide at water-ceramic oxide interfaces. J Phys Chem B 109:3364–3370. doi:10.1021/jp046405d

    Article  Google Scholar 

  • Hsieh C-L, Grange R, Pu Y, Psaltis D (2010) Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes. Biomaterials 31:2272–2277. doi:10.1016/j.biomaterials.2009.11.096

    Article  Google Scholar 

  • Huang T, Xu HG, Jiao KX et al (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19:1622–1626. doi:10.1002/adma.200602533

    Article  Google Scholar 

  • Jean J-H, Wang H-R (2005) Dispersion of aqueous barium titanate suspensions with ammonium salt of poly(methacrylic acid). J Am Ceram Soc 81:1589–1599. doi:10.1111/j.1151-2916.1998.tb02521.x

    Article  Google Scholar 

  • Jeong CK, Kim I, Park K-I et al (2013) Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 7:11016–11025

    Article  Google Scholar 

  • Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  • Kim P, Jones SC, Hotchkiss PJ et al (2007) Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19:1001–1005. doi:10.1002/adma.200602422

    Article  Google Scholar 

  • Knauert ST, Douglas JF, Starr FWA (2007) The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength. J Polym Sci, Part B 45:1882–1897. doi:10.1002/polb

    Article  Google Scholar 

  • Larrañeta E, Isasi J (2012) Self-assembled supramolecular gels of reverse poloxamers and cyclodextrins. Langmuir 28(34):12457–12462

    Article  Google Scholar 

  • Li L, Sun X, Yang Y et al (2006) Synthesis of anatase TiO2 nanoparticles with beta-cyclodextrin as a supramolecular shell. Chem Asian J 1:664–668. doi:10.1002/asia.200600103

    Article  Google Scholar 

  • Lingley Z, Mahalingam K, Lu S et al (2013) Nanocrystal-semiconductor interface: atomic-resolution cross-sectional transmission electron microscope study of lead sulfide nanocrystal quantum dots on crystalline silicon. Nano Res 7:219–227. doi:10.1007/s12274-013-0389-4

    Article  Google Scholar 

  • Mamana N, Pellegri N (2015) Functional BaTiO3 nanostructures immobilized onto si-based substrates using sol–gel and reverse micelle techniques. J Nanoparticle Res 17:115. doi:10.1007/s11051-015-2930-8

    Article  Google Scholar 

  • Olmos D, Martínez F, González-Gaitano G, González-Benito J (2011) Effect of the presence of silica nanoparticles in the coefficient of thermal expansion of LDPE. Eur Polym J 47:1495–1502. doi:10.1016/j.eurpolymj.2011.06.003

    Article  Google Scholar 

  • Ozel F, Kockar H, Beyaz S et al (2013) Superparamagnetic iron oxide nanoparticles: effect of iron oleate precursors obtained with a simple way. J Mater Sci 24:3073–3080. doi:10.1007/s10854-013-1213-3

    Google Scholar 

  • Paik U, Hackley VA, Choi S-C, Jung Y-G (1998) The effect of electrostatic repulsive forces on the stability of BaTiO3 particles suspended in non-aqueous media. Colloids Surfaces A Physicochem Eng Asp 135:77–88. doi:10.1016/S0927-7757(97)00234-3

    Article  Google Scholar 

  • Paik U, Yeo J-G, Lee M-H et al (2002) Dissolution and reprecipitation of barium at the particulate BaTiO3–aqueous solution interface. Mater Res Bull 37:1623–1631. doi:10.1016/S0025-5408(02)00820-6

    Article  Google Scholar 

  • Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804. doi:10.1063/1.365983

    Article  Google Scholar 

  • Ring KM, Kavanagh KL (2003) Substrate effects on the ferroelectric properties of fine-grained BaTiO[sub 3] films. J Appl Phys 94:5982. doi:10.1063/1.1615304

    Article  Google Scholar 

  • Saenger W, Jacob J, Gessler K et al (1998) Structures of the common cyclodextrins and their larger analogues-beyond the doughnut. Chem Rev 98:1787–1802

    Article  Google Scholar 

  • Sakai T, Hoshiai S, Nakamachi E (2006) Biochemical compatibility of PZT piezoelectric ceramics covered with titanium thin film. J Optoelectron Adv Mater 8:1435–1437

    Google Scholar 

  • Scaife BKP (1998) Principles of dielectrics. Oxford University Press, New York

    Google Scholar 

  • Schexnailder P, Schmidt G (2008) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11. doi:10.1007/s00396-008-1949-0

    Article  Google Scholar 

  • Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147:1718. doi:10.1149/1.1393423

    Article  Google Scholar 

  • Serra-Gómez R, Tardajos G, González-Benito J, González-Gaitano G (2012a) Rhodamine solid complexes as fluorescence probes to monitor the dispersion of cyclodextrins in polymeric nanocomposites. Dye Pigment 94:427–436. doi:10.1016/j.dyepig.2012.02.009

    Article  Google Scholar 

  • Serra-Gómez R, Gonzalez-Gaitano G, González-Benito J (2012b) Composites based on EVA and barium titanate submicrometric particles: preparation by high-energy ball milling and characterization. Polym Compos 33:1549–1556. doi:10.1002/pc

    Article  Google Scholar 

  • Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10:3223–3230. doi:10.1021/nl102184c

    Article  Google Scholar 

  • Shiraishi Y, Tsujihata R, Sawai H et al (2015) Effect of particle size on electro-optic properties of liquid crystal devices doped with γ-cyclodextrin stabilized barium titanate nanoparticles. Mol Cryst Liq Cryst 611:100–108. doi:10.1080/15421406.2015.1028000

    Article  Google Scholar 

  • Städe LW, Nielsen TT, Duroux L et al (2015) Nonfouling tunable βCD dextran polymer films for protein applications. ACS Appl Mater Interfaces 7:4160–4168. doi:10.1021/am508350r

    Article  Google Scholar 

  • Sun X, Zheng C, Zhang F et al (2008) Synthesis of BaTiO3 nanocrystals with beta-cyclodextrin as a supramolecular shell. Wuji Huaxue Xuebao 24:93–97

    Google Scholar 

  • Tripathi SK, Gupta A, Kumari M (2012) Dielectric and Modulus spectra studies on electrical conductivity and dielectric behaviour of PVdF–HFP–PMMA–NaI polymer blend electrolyte. Bull Mater Sci 35:969–975. doi:10.1007/s12034-012-0387-2

    Article  Google Scholar 

  • Tsuchiya K, Akagawa Y, Uetsuji Y, Nakamachi E (2011) Design of biocompatible high-piezoelectric BaTiO3 with additives. In: Juodkazis S, Gu M (eds) Smart nano-micro materials and devices. International society for optics and photonics, p 82042A

  • Wang H, Bongio M, Farbod K et al (2013) Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals. Acta Biomater. doi:10.1016/j.actbio.2013.08.036

    Google Scholar 

  • Yu C-R, Wu D-M, Liu Y et al (2011) Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles. Compos Sci Technol 71:1706–1712. doi:10.1016/j.compscitech.2011.07.022

    Article  Google Scholar 

  • Zattera AJ, Bianchi O, Oliveira RVB et al (2005) Characterization of EVA residues from the shoe industry and post-consumer urban-waste polyethylenes. Cell Polym 24:139–158

    Google Scholar 

Download references

Acknowledgments

Financial supports from Asociación de Amigos of the University of Navarra for the PhD scholarship of R. Serra-Gómez as well as the Ministerio de Economia y Competitividad in the form of funding under projects. MAT2010-16815 and MAT2014-59116, are greatfully acknowledged. The authors would also like to thank Prof. I. Navarro (U. de Navarra) for his assistance with Z-potential measurements, and S. Ehrig and J. Dunlop, PhD. from the MPI of Colloids and Interfaces (Potsdam, Germany) for their help with the confocal imaging experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. González-Gaitano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serra-Gómez, R., Martinez-Tarifa, J.M., González-Benito, J. et al. Cyclodextrin-grafted barium titanate nanoparticles for improved dispersion and stabilization in water-based systems. J Nanopart Res 18, 24 (2016). https://doi.org/10.1007/s11051-015-3321-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3321-x

Keywords

Navigation