Skip to main content
Log in

“Single-” and “multi-core” FePt nanoparticles: from controlled synthesis via zwitterionic and silica bio-functionalization to MRI applications

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The value of the magnetization has a strong influence on the performance of nanoparticles that act as the contrast agent material for MRI. In this article, we describe processing routes for the synthesis of FePt nanoparticles of different sizes, which, as a result, exhibit different magnetization values. “Single-core” FePt nanoparticles of different sizes (3–15 nm) were prepared via one-step or two-step synthesis, with the latter exhibiting twice the magnetization (m (1.5T) = 14.5 emu/g) of the nanoparticles formed via the one-step synthesis (m (1.5T) < 8 emu/g). Furthermore, we propose the synthesis of “multi-core” FePt nanoparticles by changing the ratio between the two surfactants (oleylamine and oleic acid). The step from smaller “single-core” FePt nanoparticles towards the larger, “multi-core” FePt nanoparticles (>20 nm) leads to an increase in the magnetization m (1.5T) from 8 to 19.5 emu/g, without exceeding the superparamagnetic limit. Stable water suspensions were prepared using two different approaches: (a) functionalization with a biocompatible, zwitterionic, catechol ligand, which was used on the FePt nanoparticles for the first time, and (b) coating with SiO2 shells of various thicknesses. These FePt-based nanostructures, the catechol- and SiO2-coated “single-core” and “multi-core” FePt nanoparticles, were investigated in terms of the relaxation rates. The higher r 2 values obtained for the “multi-core” FePt nanoparticles compared to that for the “single-core” ones indicate the superiority of the “multi-core” FePt nanoparticles as T 2 contrast agents. Furthermore, it was shown that the SiO2 coating reduces the r 1 and r 2 relaxation values for both the “single-core” and “multi-core” FePt nanoparticles. The high r 2/r 1 ratios obtained in our study put FePt nanoparticles near the top of the list of candidate materials for use in MRI.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ai H, Flask C, Weinberg B et al (2005) Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv Mater 17:1949–1952. doi:10.1002/adma.200401904

    Article  Google Scholar 

  • Aslam M, Fu L, Li S, Dravid VP (2005) Silica encapsulation and magnetic properties of FePt nanoparticles. J Colloid Interface Sci 290:444–449. doi:10.1016/j.jcis.2005.04.050

    Article  Google Scholar 

  • Bagaria HG, Ada ET, Shamsuzzoha M et al (2006) Understanding mercapto ligand exchange on the surface of FePt nanoparticles. Langmuir 22:7732–7737. doi:10.1021/la0601399

    Article  Google Scholar 

  • Balasubramaniam S, Kayandan S, Lin Y-N et al (2014) Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T2-weighted MRI contrast. Langmuir 30:1580–1587. doi:10.1021/la403591z

    Article  Google Scholar 

  • Barisik M, Atalay S, Beskok A, Qian S (2014) Size dependent surface charge properties of silica nanoparticles. J Phys Chem C 118:1836–1842. doi:10.1021/jp410536n

    Article  Google Scholar 

  • Berret J-F, Schonbeck N, Gazeau F et al (2006) Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging. J Am Chem Soc 128:1755–1761. doi:10.1021/ja0562999

    Article  Google Scholar 

  • Bin Na H, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148. doi:10.1002/adma.200802366

    Article  Google Scholar 

  • Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  Google Scholar 

  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  Google Scholar 

  • Chen S, Andre P (2012) Colloidal syntheses of FePt nanoparticles. Int J Nanotechnol 9:39. doi:10.1504/IJNT.2012.044829

    Article  Google Scholar 

  • Chen H, Yeh J, Wang L et al (2010a) Preparation and control of the formation of single core and clustered nanoparticles for biomedical applications using a versatile amphiphilic diblock copolymer. Nano Res 3:852–862. doi:10.1007/s12274-010-0056-y

    Article  Google Scholar 

  • Chen S, Wang L, Duce SL et al (2010b) Engineered biocompatible nanoparticles for in vivo imaging applications. J Am Chem Soc 132:15022–15029. doi:10.1021/ja106543j

    Article  Google Scholar 

  • Chou SW, Zhu CL, Neeleshwar S et al (2009) Controlled growth and magnetic property of FePt nanostructure: cuboctahedron, octapod, truncated cube, and cube. Chem Mater 21:4955–4961. doi:10.1021/cm902199p

    Article  Google Scholar 

  • Chou SW, Shau YH, Wu PC et al (2010) In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc 132:13270–13278. doi:10.1021/ja1035013

    Article  Google Scholar 

  • Dai ZR, Sun S, Wang ZL (2001) Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals. Nano Lett 1:443–447. doi:10.1021/nl0100421

    Article  Google Scholar 

  • Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545. doi:10.1039/c2cs15327k

    Article  Google Scholar 

  • Green LA, Thuy TT, Mott DM et al (2014) Multicore magnetic FePt nanoparticles: controlled formation and properties. RSC Adv 4:1039. doi:10.1039/c3ra44319a

    Article  Google Scholar 

  • Hirani B, Li J, Djurovich PI et al (2007) Cyclometallated iridium and platinum complexes with noninnocent ligands. Inorg Chem 46:3865–3875. doi:10.1021/ic061556b

    Article  Google Scholar 

  • Huang G, Li H, Chen J et al (2014) Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Nanoscale 6:10404–10412. doi:10.1039/c4nr02680b

    Article  Google Scholar 

  • Kim DK, Kan D, Veres T et al (2005) Monodispersed Fe-Pt nanoparticles for biomedical applications. J Appl Phys 97:50–52. doi:10.1063/1.1860851

    Google Scholar 

  • Kostevšek N, Žužek Rožman K, Arshad MS et al (2015) Multimodal hybrid FePt/SiO 2/Au nanoparticles for nanomedical applications: combining photothermal stimulation and manipulation with an external magnetic field. J Phys Chem C 119:16374–16382. doi:10.1021/acs.jpcc.5b03725

    Article  Google Scholar 

  • Lee DC, Mikulec FV, Pelaez JM et al (2006a) Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B 110:11160–11166. doi:10.1021/jp060974z

    Article  Google Scholar 

  • Lee J-H, Jun Y-W, Yeon S-I et al (2006b) Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed Engl 45:8160–8162. doi:10.1002/anie.200603052

    Article  Google Scholar 

  • Liang S, Zhou Q, Wang M et al (2015) Water-soluble l-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int J Nanomedicine 10:2325–2333. doi:10.2147/IJN.S75174

    Article  Google Scholar 

  • Lu J, Liong M, Li Z et al (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794–1805. doi:10.1002/smll.201000538

    Article  Google Scholar 

  • Maenosono S, Saita S (2006) Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia. IEEE Trans Magn 42:1638–1642. doi:10.1109/TMAG.2006.872198

    Article  Google Scholar 

  • Maenosono S, Suzuki T, Saita S (2008) Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J Magn Magn Mater 320:79–83. doi:10.1016/j.jmmm.2008.01.026

    Article  Google Scholar 

  • Nandwana V, Nandwana V, Elkins KE et al (2007) Size and shape control of monodisperse FePt nanoparticles. J Phys Chem C 111:4185–4189. doi:10.1021/jp068330e

    Article  Google Scholar 

  • Saita S, Maenosono S (2005) Formation mechanism of FePt nanoparticles synthesized via pyrolysis of Iron(III) ethoxide and platinum(II) acetylacetonate. Chem Mater 17:6624–6634. doi:10.1021/cm051760h

    Article  Google Scholar 

  • Shevchenko EV, Talapin DV, Schnablegger H et al (2003) Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. J Am Chem Soc 125:9090–9101. doi:10.1021/ja029937l

    Article  Google Scholar 

  • Shin T, Choi Y, Kim S, Cheon J (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 44:4501–4516. doi:10.1039/C4CS00345D

    Article  Google Scholar 

  • Slichter CP (1990) Principles of magnetic resonance. Springer, Berlin

    Book  Google Scholar 

  • Stanford CJ, Dagenais M, Park J-H, DeShong P (2008) Real-time monitoring of siloxane monolayer film formation on silica using a fiber Bragg grating. Curr Anal Chem 4:356–361

    Article  Google Scholar 

  • Sun S (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992. doi:10.1126/science.287.5460.1989

    Article  Google Scholar 

  • Tanaka Y, Saita S, Maenosono S (2008) Influence of surface ligands on saturation magnetization of FePt nanoparticles. Appl Phys Lett 92:47–50. doi:10.1063/1.2891083

    Article  Google Scholar 

  • Tanaka K, Narita A, Kitamura N et al (2010) Preparation for highly sensitive MRI contrast agents using core/shell type nanoparticles consisting of multiple SPIO cores with thin silica coating. Langmuir 26:11759–11762. doi:10.1021/la1015077

    Article  Google Scholar 

  • Taylor RM, Huber DL, Monson TC et al (2012) Structural and magnetic characterization of superparamagnetic iron platinum nanoparticle contrast agents for magnetic resonance imaging. J Vac Sci Technol B Nanotechnol Microelectron 30:2C101–2C1016

    Google Scholar 

  • Thanh NTK (2012) Magnetic nanoparticles: from fabrication to clinical applications. CRC Press, London

    Book  Google Scholar 

  • Tong S, Hou S, Zheng Z et al (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10:4607–4613. doi:10.1021/nl102623x

    Article  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    Article  Google Scholar 

  • Wang C, Hou Y, Kim J, Sun S (2007) A general strategy for synthesizing FePt nanowires and nanorods. Angew Chem Int Ed 46:6333–6335

    Article  Google Scholar 

  • Wei H, Insin N, Lee J et al (2012) Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Lett 12:22–25. doi:10.1021/nl202721q

    Article  Google Scholar 

  • Wu XW, Liu C, Li L et al (2004) Nonmagnetic shell in surfactant-coated FePt nanoparticles. J Appl Phys. 95:6810–6812

    Article  Google Scholar 

  • Xu C, Xu K, Gu H et al (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126:9938–9939. doi:10.1021/ja0464802

    Article  Google Scholar 

  • Yang H, Zhang J, Tian Q et al (2010) One-pot synthesis of amphiphilic superparamagnetic FePt nanoparticles and magnetic resonance imaging in vitro. J Magn Magn Mater 322:973–977. doi:10.1016/j.jmmm.2009.11.039

    Article  Google Scholar 

  • Zeynali H, Sebt SA, Arabi H, Akbari H (2012) Size control of FePt nanoparticles produced by seed mediated growth process. J Clust Sci 23:1107–1117. doi:10.1007/s10876-012-0506-7

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency (ARRS), Project J2-6760. This work was financially supported by Grant G.0618.11 N of the Fund for Scientific Research Flanders (FWO-V, www.fwo.be); the Agency for Innovation by Science and Technology in Flanders (IWT, www.iwt.be); and the KU Leuven (GOA, www.kuleuven.be). M. B. is grateful for the support from the IWT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Kostevšek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostevšek, N., Šturm, S., Serša, I. et al. “Single-” and “multi-core” FePt nanoparticles: from controlled synthesis via zwitterionic and silica bio-functionalization to MRI applications. J Nanopart Res 17, 464 (2015). https://doi.org/10.1007/s11051-015-3278-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3278-9

Keywords

Navigation