Skip to main content
Log in

Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hazard. Fire Saf J 18:255–272. doi:10.1016/0379-7112(92)90019-9

    Article  Google Scholar 

  • Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos Part A 34:689–694. doi:10.1016/S1359-835X(03)00140-4

    Article  Google Scholar 

  • Bouillard J, R’Mili B, Moranviller D et al (2013) Nanosafety by design: risks from nanocomposite/nanowaste combustion. J Nanoparticle Res 15:1–11

    Article  Google Scholar 

  • Burtscher H, Baltensperger U, Bukowiecki N et al (2001) Separation of volatile and non-volatile aerosol fractions by thermodesorption: instrumental development and applications. J Aerosol Sci 32:427–442. doi:10.1016/S0021-8502(00)00089-6

    Article  Google Scholar 

  • Chatterjee S, Wang JW, Kuo WS et al (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10. doi:10.1016/j.cplett.2012.02.006

    Article  Google Scholar 

  • Christou A, Stec AA (2014) Characterising the release of carbon nanotubes from burning CNT-polymer composites. In: Nanosafe 2014, Grenoble. http://www.nanosafe.org/home/liblocal/docs/Nanosafe%202014/Session%206/06b-6%20-%20Antonis%20CHRISTOU.pdf.

  • Ciecierska E, Boczkowska A, Kurzydlowski KJ et al (2013) The effect of carbon nanotubes on epoxy matrix nanocomposites. J Therm Anal Calorim 111:1019–1024. doi:10.1007/s10973-012-2506-0

    Article  Google Scholar 

  • Covaci A, Gerecke AC, Law RJ et al (2006) Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol 40:3679–3688

    Article  Google Scholar 

  • Dittrich B, Wartig K-A, Hofmann D et al (2013) Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polym Adv Technol 24:916–926

    Article  Google Scholar 

  • Du J, Wang S, You H, Zhao X (2013) Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review. Environ Toxicol Pharmacol 36:451–462. doi:10.1016/j.etap.2013.05.007

    Article  Google Scholar 

  • Erdely A, Dahm M, Chen BT et al (2013) Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Part Fibre Toxicol. doi:10.1186/1743-8977-10-53

    Google Scholar 

  • Fu S, Song P, Yang H et al (2010) Effects of carbon nanotubes and its functionalization on the thermal and flammability properties of polypropylene/wood flour composites. J Mater Sci 45:3520–3528

    Article  Google Scholar 

  • Ging J, Tejerina-Anton R, Ramakrishnan G, Nielsen M, Murphy K, Gorham JM, Nguyen T, Orlov A (2014) Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: environmental and toxicological implications. Sci Total Environ 473–474:9–19

    Article  Google Scholar 

  • Hollertz R, Chatterjee S, Gutmann H et al (2011) Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes. Nanotechnology 22:125702. doi:10.1088/0957-4484/22/12/125702

    Article  Google Scholar 

  • Huang H, Liu CH, Wu Y, Fan S (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17:1652–1656. doi:10.1002/adma.200500467

    Article  Google Scholar 

  • Kaiser JP, Roesslein M, Buerki-Thurnherr T, Wick P (2011) Carbon nanotubes—curse or blessing. Curr Med Chem 18:2115–2128. doi:10.1007/s10101-010-0075-x

    Article  Google Scholar 

  • Kashiwagi T, Grulke E, Hilding J et al (2002) Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol Rapid Commun 23:761–765

    Article  Google Scholar 

  • Kashiwagi T, Grulke E, Hilding J et al (2004) Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45:4227–4239

    Article  Google Scholar 

  • Kashiwagi T, Du F, Winey KI et al (2005a) Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer 46:471–481

    Article  Google Scholar 

  • Kashiwagi T, Du FM, Douglas JF et al (2005b) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4:928–933

    Article  Google Scholar 

  • Kashiwagi T, Mu M, Winey K et al (2008) Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer 49:4358–4368

    Article  Google Scholar 

  • Kim JY, Park HS, Kim SH (2009) Thermal decomposition behavior of carbon-nanotube-reinforced poly(ethylene 2,6-naphthalate) nanocomposites. J Appl Polym Sci 113:2008–2017

    Article  Google Scholar 

  • Lu L, Yu H, Wang S, Zhang Y (2009) Thermal degradation behavior of styrene-butadiene-styrene tri-block copolymer/multiwalled carbon nanotubes composites. J Appl Polym Sci 112:524–531. doi:10.1002/app.29414

    Article  Google Scholar 

  • Ma P-C, Mo S-Y, Tang B-Z, Kim J-K (2010a) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48:1824–1834. doi:10.1016/j.carbon.2010.01.028

    Article  Google Scholar 

  • Ma PC, Siddiqui NA, Marom G, Kim JK (2010b) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites A 41:1345

    Article  Google Scholar 

  • Mouritz AP, Gibson AG (2006) Fire properties of polymer composite materials. Springer, New York

  • Mueller NC, Buha J, Wang J, Ulrich A, Nowack B (2013) Modeling the flows of engineered nanomaterials during waste handling. Environ Sci 15:251–259. doi:10.1039/c2em30761h

    Google Scholar 

  • Neises B, Steglich W (1978) Simple method for esterification of carboxylic-acids. Angew Chem Int Ed Engl 17:522–524

    Article  Google Scholar 

  • Nguyen T, Pellegrin B, Bernard C, Gu X, Gorham JM, Stutzman P, Stanley D, Shapiro A, Byrd E, Hettenhouser R, Chin J (2011) Fate of nanoparticles during life cycle of polymer nanocomposites. J Phys 304:12060

    Google Scholar 

  • Nowack B, David RM, Fissan H et al (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11. doi:10.1016/j.envint.2013.04.003

    Article  Google Scholar 

  • Nyden MR, Harris RH, Kim YS et al (2010) Characterizing particle emissions from burning polymer nanocomposites. In: Technical proceedings o f the 2010 NSTI nanotechnology conference expo, p 717–719

  • Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886. doi:10.1246/bcsj.38.1881

    Article  Google Scholar 

  • Pinto F, Costa P, Gulyurtlu I, Cabrita I (1999) Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. J Anal Appl Pyrolysis 51:39–55. doi:10.1016/S0165-2370(99)00007-8

    Article  Google Scholar 

  • Qu Z, Wang G (2012) A comparative study on the properties of the different amino-functionalized multiwall carbon nanotubes reinforced epoxy resin composites. J Appl Polym Sci 124:403–411. doi:10.1002/app

    Article  Google Scholar 

  • Rahatekar SS, Zammarano M, Matko S et al (2010) Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polym Degrad Stab 95:870–879. doi:10.1016/j.polymdegradstab.2010.01.003

    Article  Google Scholar 

  • Ribeiro B, Nohara L, Oishi S et al (2012) Nonoxidative thermal degradation kinetic of polyamide 6,6 reinforced with carbon nanotubes. J Thermoplast Compos Mater 26:1317–1331. doi:10.1177/0892705712439566

    Article  Google Scholar 

  • Schartel B, Pötschke P, Knoll U, Abdel-Goad M (2005) Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polym J 41:1061–1070

    Article  Google Scholar 

  • Schlagenhauf L, Chu BTT, Buha J et al (2012) Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process. Environ Sci Technol 46:7366–7372. doi:10.1021/es300320y

    Article  Google Scholar 

  • Seo M-K, Park S-J (2004) A kinetic study on the thermal degradation of multi-walled carbon nanotubes-reinforced poly(propylene) composites. Macromol Mater Eng 289:368–374. doi:10.1002/mame.200300303

    Article  Google Scholar 

  • Shariati J, Saadatabadi AR, Khorasheh F (2012) Thermal degradation behavior and kinetic analysis of ultra high molecular weight polyethylene based multi-walled carbon nanotube nanocomposites prepared via in-situ polymerization. J Macromol Sci Part A 49:749–757. doi:10.1080/10601325.2012.703520

    Article  Google Scholar 

  • Uddin N, Nyden MR, Davis RD (2011) Characterization of nanoparticle release from polymer nanocomposites due to fire. In: Nanotech 2011 conference and expo, p 1–4

  • Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA et al (2008) Carbon nanotubes provide self-extinguishing grade to silicone-based foams. J Mater Chem 18:3933–3939

    Article  Google Scholar 

  • Vogt J (1985) Thermal analysis of epoxy-resins: identification of decomposition products. Thermochim Acta 85:411–414. doi:10.1016/0040-6031(85)85611-2

    Article  Google Scholar 

  • Wang J, Asbach C, Fissan H, Hülser T, Kuhlbusch TAJ, Thompson D, Pui DYH (2011) How can nanobiotechnology oversight advance science and industry: examples from environmental, health and safety studies of nanoparticles (nano-EHS). J Nanopart Res 13:1373–1387. doi:10.1007/s11051-011-0236-z

    Article  Google Scholar 

  • Willis J (2012) Proposal to amend Annex A to the Stockholm Convention to be discussed at the sixth meeting of the Conference of the Parties

  • Wu Q, Zhu W, Zhang C et al (2010) Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon 48:1799–1806

    Article  Google Scholar 

  • Zammarano M, Krämer RH, Harris R et al (2008) Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation. Polym Adv Technol 19:588–595. doi:10.1002/pat

    Article  Google Scholar 

  • Zybex technologies (2014) Safety Data Sheet ZNT-boost (Solid). Retrieved from http://www.zyvextech.com/assets/pdf/ZNT-bOOST-SOLID-Resin-Linear-Polymer-20032514-3.pdf

Download references

Acknowledgments

This study was financed by the Swiss National Science Foundation (NFP 64), “Evaluation platform for safety and environment risks of carbon nanotube reinforced nanocomposites,” 406440_131286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlagenhauf, L., Kuo, YY., Bahk, Y.K. et al. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures. J Nanopart Res 17, 440 (2015). https://doi.org/10.1007/s11051-015-3245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3245-5

Keywords

Navigation