Skip to main content
Log in

Nanosafety by design: risks from nanocomposite/nanowaste combustion

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Risks associated with the end-of-life of nanomaterials are an issue that needs to be addressed so that the public perception and opinion, with regard to these emerging technological products, can effectively be supported by experimental evidences. In order to find new ecological ways to treat nanoproducts at their end-of-life, a new home-made demonstrator system was setup at INERIS, specifically designed to perform burning tests, coupled to a differential thermal analyzer to monitor the combustion kinetics. To assess nanoobject release during combustion, a high-performance nanocomposite polymer commonly used in the automotive industry, namely the polymeric compound acrylonitrile butadiene styrene matrix mixed with 3 wt% of multiwalled carbon nanotubes (MWCNTs) was tested. To assess the potential release of carbon nanotubes (CNTs) during the combustion with this tool, the particle size distribution in the fumes was measured using an electrical low pressure impactor, and CNTs were collected using an aspiration-based transmission electron microscopy grid sampler. One of primary objective of these preliminary tests described in this study consisted in validating whether CNT fibers can be released in the gas phase during the combustion of a polymeric matrix filled with CNTs. It was found indeed that MWCNT of about 12-nm diameter and 600-nm length can be released in the ambient environment during combustion of 3 % MWCNT ABS. Such information is critical to assess whether a nanoproduct can be deemed to be considered as “nanosafe by design” in its risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Arrhenius’ preexponential factor

CNTs:

Carbon nanotubes

DSC:

Differential scanning calorimetry

E A :

Activation energy (J mol−1)

H :

Enthalpy of reaction (J g−1)

k :

Reaction rate constant

MWCNTs:

Multiwalled carbon nanotubes

n, m :

Orders of reaction

\( P_{{{\text{O}}_{2} }} \) :

Oxygen partial pressure (Pa)

r s :

Surface reaction (mol m−2 s−1)

S p :

Surface of the particle (m²)

SEM:

Scanning electron microscopy

SWCNTs:

Single-walled carbon nanotubes

t :

Time (s)

T :

Temperature (K)

T onset :

Temperature at which the oxidation begins (K)

TEM:

Transmission electron microscopy

X :

Reaction conversion rate

ΔH :

Total heat released during oxidation (J g−1)

ρ :

Density (kg/m−3)

References

  • Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  CAS  Google Scholar 

  • Bouillard J, Vignes A, Dufaud O, Perrin L, Thomas D (2010) Ignition and explosion risks of nanopowders. J Hazard Mater 181(1–3):873–880

    Article  CAS  Google Scholar 

  • Bouillard J, Frejafon E, R’mili B, Fleury D (2011) Device for the characterization of the particulate release from combustion or thermal constraints upon materials containing nano-objects. France, Patent French FR 2976078, European Patent EP 2530450

  • Breuer O, Sundararaj U (2004) Big returns from small fibers : a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645

    Article  CAS  Google Scholar 

  • Chen WX, Tu JP, Wang LY, Gan HY, Xu ZD, Zhang XB (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2):215–222

    Article  CAS  Google Scholar 

  • Danafar F, Fakhru’l A, Salleh MAM, Biak DRA (2009) Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—a review. Chem Eng J 155:37–48

    Article  CAS  Google Scholar 

  • Fleury D, Bomfim JAS, Vignes A, Girard C, Metz S, Munoz F, RMili B, Ustache A, Guiot A, Bouillard JX (2011a) Identification of the main exposure scenarios in the production of CNT–polymer nanocomposites by melt-moulding process. J Clean Prod. doi:10.1016/j.jclepro.2011.11.009, pp. 1–15

  • Fleury DJ, Bomfim AS, Sébastien Metz, Jacques XB, Jean-Marc B (2011b) Nanoparticle risk management and cost evaluation: a general framework. J Phys 304:012084. doi:10.1088/1742-6596/304/1/012084

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single shell carbon nanotubes of 1 nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  • ISO/TS-27687 (2008) “Nanotechnologies—Terminology and definitions for nano-objects—Nanoparticle, nanofibre and nanoplate”, International Standards Organization

  • Kashiwagi T (2004) Thermal and flammability properties of olypropylene/carbon nanotube nanocomposites. Polymer 45:4227–4239

    Article  CAS  Google Scholar 

  • Kim M, Park Y-B, Okoli OI, Zhang C (2009) Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos Sci Technol 69:335–342

    Article  CAS  Google Scholar 

  • Larachi FBK, Hamoudia S, Sayaria A (2001) Kinetics of carbon oxide evolution in temperature-programmed oxidation of carbonaceous laydown deposited on wet oxidation catalysts. Catal Today 64:163–177

    Article  CAS  Google Scholar 

  • Li J, Tong L, Fang Z, Gu A, Xu Z (2006) Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites. Polym Degrad Stab 91:2046–2052

    Article  CAS  Google Scholar 

  • Lin L, Deo MD, Hanson FV, Oblad G (1991) Nonisothermal analysis of the kinetics of the combustion of coked sand. Ind Eng Chem Res 30(8):1795–1801

    Article  CAS  Google Scholar 

  • Monthioux MKV (2006) Who should be given the credit for the discovery of carbon nanotubes. Carbon 44:1621–1623

    Article  CAS  Google Scholar 

  • Musee N (2011) Nanowastes and the environment: potential new waste management paradigm. Environ Int 37(1):112–128

    Article  CAS  Google Scholar 

  • Nyden MR, Haris RH, Kim YS, Davis RD, Marsh ND, Zammarano M (2010) Characterizing particle emissions from burning polymer nanocomposites. Nanotechnology 2010: Advanced Materials, CNTs, Particles, Films and Composites - Technical Proceedings of the 2010 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2010, vol 1, pp 717–719

  • Paradise MGT (2007) Carbon nanotubes—production and industrial applications. Mater Des 28:1477–1489

    Article  CAS  Google Scholar 

  • Pötschke P (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  • Radushkevich L, Lukyanovich V (1952) O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte (Carbon structure formed under thermal decomposition of carbon monoxide on iron). Zhur Fiz Khim (SoV J Phys Chem) 26:88–95

    CAS  Google Scholar 

  • Slaoui SBT (2004) Etude expérimentale et modélisation de la cinétique de combustion du coke. Comp rendus chimie 7:547–557

    Article  CAS  Google Scholar 

  • Tia SBSC, Wibulswas P (1991) Thermogravimetric analysis of Thai lignite—II. char combustion kinetics. Energy Convers Manag 31(3):8

    Google Scholar 

  • Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Lett Nat 381:678–680

    Article  CAS  Google Scholar 

  • Vignes A, Dufaud O, Perrin L, Thomas D, Bouillard J, Janes A, Vallieres C (2009) Thermal ignition and self heating of carbon nanotubes: from thermokinetic study to process safety. Chem Eng Sci 64:4210–4221

    Article  CAS  Google Scholar 

  • Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, Jiang K, Fan S (2009) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9:3137–3141

    Article  CAS  Google Scholar 

  • Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  CAS  Google Scholar 

  • Yang S, Castillejaa JR, Barrerab EV, Lozanoa K (2004) Thermal analysis of an acrylonitrile–butadiene–styrene/SWNT composite. Polym Degrad Stab 83:383–388

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been performed within the EU project SAPHIR no NMP2-CT-2006-026666 (Safe, Integrated & Controlled Production of High-Tech multifunctional materials and their recycling) supported by the European Commission through the sixth framework program for research and development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques X. Bouillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouillard, J.X., R’Mili, B., Moranviller, D. et al. Nanosafety by design: risks from nanocomposite/nanowaste combustion. J Nanopart Res 15, 1519 (2013). https://doi.org/10.1007/s11051-013-1519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1519-3

Keywords

Navigation