Skip to main content
Log in

Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Combining ab initio modeling and 57Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atmane Y, Sicard L, Lamouri A et al (2013) Functionalization of aluminum nanoparticles using a combination of aryl diazonium salt chemistry and iniferter method. J Phys Chem C 117:26000–26006. doi:10.1021/jp406356s

    Article  Google Scholar 

  • Basti H, Ben Tahar L, Smiri L et al (2010) Catechol derivatives-coated Fe3O4 and γ-Fe2O3 nanoparticles as potential MRI contrast agents. J Colloid Interface Sci 341:248–254

    Article  Google Scholar 

  • Belanger D, Pinson J (2011) Electrografting: a powerful method for surface modification. Chem Soc Rev 40:3995–4048

    Article  Google Scholar 

  • Bell KJ, Brooksby PA, Polson MIJ, Downard AJ (2014) Evidence for covalent bonding of aryl groups to MnO2 nanorods from diazonium-based grafting. Chem Commun 50:13687–13690. doi:10.1039/C4CC05606J

    Article  Google Scholar 

  • Benny S (2010) High temperature water gas shift catalysts: a computer modelling study. UCL (University College London), London

    Google Scholar 

  • Binder WH, Weinstabl HC (2007) Surface-modified superparamagnetic iron-oxide nanoparticles. Monatshefte Chem Chem Mon 138:315–320. doi:10.1007/s00706-007-0617-2

    Article  Google Scholar 

  • Borasio M, Rodríguez de la Fuente O, Rupprechter G, Freund H-J (2005) In situ studies of methanol decomposition and oxidation on Pd (111) by PM-IRAS and XPS spectroscopy. J Phys Chem B 109:17791–17794

    Article  Google Scholar 

  • Chehimi MM (2012) Aryl diazonium salts: new coupling agents and surface science. Wiley, Hoboken

    Book  Google Scholar 

  • Chen S, Liu W (2006) Oleic acid capped PbS nanoparticles: synthesis, characterization and tribological properties. Mater Chem Phys 98:183–189

    Article  Google Scholar 

  • Chen X, Chockalingam M, Liu G et al (2011) A molecule with dual functionality 4-aminophenylmethylphosphonic acid: a comparison between layers formed on indium tin oxide by in situ generation of an aryl diazonium salt or by self-assembly of the phosphonic acid. Electroanalysis 23:2633–2642

    Article  Google Scholar 

  • Chiou B-H, Tsai Y-T, Wang CM (2014) Phenothiazine-modified electrodes: a useful platform for protein adsorption study. Langmuir 30:1550–1556

    Article  Google Scholar 

  • Chung D-J, Oh S-H, Komathi S et al (2012) One-step modification of various electrode surfaces using diazonium salt compounds and the application of this technology to electrochemical DNA (E-DNA) sensors. Electrochim Acta 76:394–403

    Article  Google Scholar 

  • Corot C, Robert P, Idée J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Article  Google Scholar 

  • Cullity BD, Graham CD (2011) Introduction to magnetic materials. Wiley, Hoboken

    Google Scholar 

  • Fang CM, van Huis MA, Zandbergen HW (2009) Structural, electronic, and magnetic properties of iron carbide Fe7C3 phases from first-principles theory. Phys Rev B. doi:10.1103/PhysRevB.80.224108

    Google Scholar 

  • Fleger Y, Mastai Y, Rosenbluh M, Dressler D (2009) SERS as a probe for adsorbate orientation on silver nanoclusters. J Raman Spectrosc 40:1572–1577

    Article  Google Scholar 

  • Fouineau J, Brymora K, Ourry L et al (2013) Synthesis, Mössbauer characterization, and ab initio modeling of iron oxide nanoparticles of medical interest functionalized by dopamine. J Phys Chem C 117:14295–14302. doi:10.1021/jp4027942

    Article  Google Scholar 

  • Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107. doi:10.1021/ar9000026

    Article  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  • Golosova AA, Papadakis CM, Jordan R (2011) Chemical functionalization of carbon nanotubes with aryl diazonium salts. In: Symposium QQ—carbon functional interfaces

  • Grau-Crespo R, Al-Baitai AY, Saadoune I, De Leeuw NH (2010) Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation. J Phys Condens Matter 22:255401. doi:10.1088/0953-8984/22/25/255401

    Article  Google Scholar 

  • Griffete N, Herbst F, Pinson J et al (2011) Preparation of water-soluble magnetic nanocrystals using aryl diazonium salt chemistry. J Am Chem Soc 133:1646–1649

    Article  Google Scholar 

  • Guillaume V, Thominot P, Coat F et al (1998) Investigation of the iron–carbon bonding for alkyl, alkynyl, carbene, vinylidene, and allenylidene complexes using <sup> 57 </sup> Fe Mössbauer spectroscopy. J Organomet Chem 565:75–80

    Article  Google Scholar 

  • Hanini A, Schmitt A, Kacem K et al (2011) Evaluation of iron oxide nanoparticle biocompatibility. Int J Nanomed 6:787

    Google Scholar 

  • Haque A-MJ, Kim K (2011) Aldehyde-functionalized benzenediazonium cation for multiprobe immobilization on microelectrode array surfaces. Langmuir 27:882–886

    Article  Google Scholar 

  • Hurley BL, McCreery RL (2004) Covalent bonding of organic molecules to Cu and Al alloy 2024 T3 surfaces via diazonium ion reduction. J Electrochem Soc 151:B252–B259

    Article  Google Scholar 

  • Jiang D, Sumpter BG, Dai S (2006) Structure and bonding between an aryl group and metal surfaces. J Am Chem Soc 128:6030–6031

    Article  Google Scholar 

  • Jørgensen J-E, Mosegaard L, Thomsen LE et al (2007) Formation of γ-Fe2O3 nanoparticles and vacancy ordering: an in situ X-ray powder diffraction study. J Solid State Chem 180:180–185. doi:10.1016/j.jssc.2006.09.033

    Article  Google Scholar 

  • Kataby G, Ulman A, Prozorov R, Gedanken A (1998) Coating of amorphous iron nanoparticles by long-chain alcohols. Langmuir 14:1512–1515

    Article  Google Scholar 

  • Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. Magn IEEE Trans 46:2523–2558

    Article  Google Scholar 

  • Lamberti F, Agnoli S, Brigo L et al (2013) Surface functionalization of fluorine-doped tin oxide samples through electrochemical grafting. ACS Appl Mater Interfaces 5:12887–12894

    Article  Google Scholar 

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23

    Article  Google Scholar 

  • Laurentius L, Stoyanov SR, Gusarov S et al (2011) Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon–gold covalent bond. ACS Nano 5:4219–4227

    Article  Google Scholar 

  • Lévy M, Wilhelm C, Siaugue J-M et al (2008) Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles. J Phys Condens Matter 20:204133. doi:10.1088/0953-8984/20/20/204133

    Article  Google Scholar 

  • Lu J, Fan J, Xu R et al (2003) Synthesis of alkyl sulfonate/alcohol-protected γ-Fe2O3 nanocrystals with narrow size distributions. J Colloid Interface Sci 258:427–431. doi:10.1016/S0021-9797(02)00152-2

    Article  Google Scholar 

  • Lutterotti L, Matthies S, Wenk H (1999) MAUD: a friendly Java program for material analysis using diffraction. IUCr Newslett CPD 21:14–15

    Google Scholar 

  • Mahouche S, Mekni N, Abbassi L et al (2009) Tandem diazonium salt electroreduction and click chemistry as a novel, efficient route for grafting macromolecules to gold surface. Surf Sci 603:3205–3211

    Article  Google Scholar 

  • Mahouche-Chergui S, Gam-Derouich S, Mangeney C, Chehimi MM (2011) Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem Soc Rev 40:4143–4166

    Article  Google Scholar 

  • Maldonado S, Smith TJ, Williams RD et al (2006) Surface modification of indium tin oxide via electrochemical reduction of aryldiazonium cations. Langmuir 22:2884–2891

    Article  Google Scholar 

  • Matrab T, Chancolon J, L’hermite MM et al (2006) Atom transfer radical polymerization (ATRP) initiated by aryl diazonium salts: a new route for surface modification of multiwalled carbon nanotubes by tethered polymer chains. Colloids Surf Physicochem Eng Asp 287:217–221

    Article  Google Scholar 

  • Matrab T, Save M, Charleux B et al (2007) Grafting densely-packed poly-n n-butyl methacrylate chains from an iron substrate by aryl diazonium surface-initiated ATRP: xPS monitoring. Surf Sci 601:2357–2366

    Article  Google Scholar 

  • Merson A, Dittrich T, Zidon Y et al (2004) Charge transfer from TiO2 into adsorbed benzene diazonium compounds. Appl Phys Lett 85:1075–1076

    Article  Google Scholar 

  • Mirkhalaf F, Mason TJ, Morgan DJ, Saez V (2011) Frequency effects on the surface coverage of nitrophenyl films ultrasonically grafted onto indium tin oxide. Langmuir 27:1853–1858

    Article  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175

    Article  Google Scholar 

  • Nilsson A, Pettersson LGM (2004) Chemical bonding on surfaces probed by X-ray emission spectroscopy and density functional theory. Surf Sci Rep 55:49–167

    Article  Google Scholar 

  • Pazo-Llorente R, Bravo-Diaz C, Gonzalez-Romero E (2004) pH effects on ethanolysis of some arenediazonium ions: evidence for homolytic dediazoniation proceeding through formation of transient diazo ethers. Eur J Org Chem 2004:3221–3226

    Article  Google Scholar 

  • Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Podvorica FI, Kanoufi F, Pinson J, Combellas C (2009) Spontaneous grafting of diazoates on metals. Electrochim Acta 54:2164–2170

    Article  Google Scholar 

  • Risse T, Carlsson A, Bäumer M et al (2003) Using IR intensities as a probe for studying the surface chemical bond. Surf Sci 546:L829–L835

    Article  Google Scholar 

  • Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596

    Article  Google Scholar 

  • Roger C, Hamon P, Toupet L et al (1991) Halo-and alkyl (pentamethylcyclopentadienyl)[1, 2-bis (diphenylphosphino) ethane] iron (III) 17-electron complexes: synthesis, NMR and magnetic properties and EHMO calculations. Organometallics 10:1045–1054

    Article  Google Scholar 

  • Ron M, Shechter H, Hirsch A, Niedzwiedz S (1966) On the Mössbauer study of cementite. Phys Lett 20:481–483

    Article  Google Scholar 

  • Rosensweig R, Kaiser R, Miskolczy G (1969) Viscosity of magnetic fluid in a magnetic field. J Colloid Interface Sci 29:680–686

    Article  Google Scholar 

  • Salah L (2006) Spectroscopic studies of the effect of addition of Y3+ on structural characteristics of Ni–Zn ferrites. Phys Status Solidi A 203:271–281

    Article  Google Scholar 

  • Shmakov AN, Kryukova GN, Tsybulya SV et al (1995) Vacancy Ordering in γ-Fe2O3: synchrotron X-ray powder diffraction and high-resolution electron microscopy studies. J Appl Crystallogr 28:141–145. doi:10.1107/S0021889894010113

    Article  Google Scholar 

  • Sienkiewicz A, Szymula M, Narkiewicz-Michalek J, Bravo-Díaz C (2014) Formation of diazohydroxides ArN2OH in aqueous acid solution: polarographic determination of the equilibrium constant KR for the reaction of 4-substituted arenediazonium ions with H2O. J Phys Org Chem 27:284–289

    Article  Google Scholar 

  • Tadmor R, Rosensweig RE, Frey J, Klein J (2000) Resolving the puzzle of ferrofluid dispersants. Langmuir 16:9117–9120

    Article  Google Scholar 

  • Valenzuela R (2005) Magnetic ceramics. Cambridge University Press, Cambridge

    Google Scholar 

  • Vericat C, Vela M, Benitez G et al (2006) Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au (111). J Phys Condens Matter 18:R867

    Article  Google Scholar 

  • Waldron R (1955) Infrared spectra of ferrites. Phys Rev 99:1727

    Article  Google Scholar 

  • White W, DeAngelis B (1967) Interpretation of the vibrational spectra of spinels. Spectrochim Acta Part Mol Spectrosc 23:985–995

    Article  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415. doi:10.1007/s11671-008-9174-9

    Article  Google Scholar 

  • Yee C, Kataby G, Ulman A et al (1999) Self-assembled monolayers of alkanesulfonic and-phosphonic acids on amorphous iron oxide nanoparticles. Langmuir 15:7111–7115

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the French Education and Research Minister for the J.F. and K.B PhD’s Grants. They want to thank GENCI/IDRIS and CRIHAN national and regional facilities for computational time (projects x2014096171 and 007, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Calvayrac.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 755 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brymora, K., Fouineau, J., Eddarir, A. et al. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles. J Nanopart Res 17, 438 (2015). https://doi.org/10.1007/s11051-015-3232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3232-x

Keywords

Navigation