Skip to main content
Log in

Unifying the templating effects of porous anodic alumina on metallic nanoparticles for carbon nanotube synthesis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are a promising material for many applications, due to their extraordinary properties. Some of these properties vary in relation to the diameter of the nanotubes; thus, precise control of CNT diameter can be critical. Porous anodic alumina (PAA) membranes have been successfully used to template electrodeposited catalyst. However, the catalysts used in CNT synthesis are frequently deposited with more precise techniques, such as electron beam deposition. We test the efficacy of PAA as a template for electron beam-deposited catalyst by studying the diameter distribution of CNTs grown catalyst of various thicknesses supported by PAA. These are then compared by ANOVA to the diameter distributions of CNTs grown on metal catalyst supported by a conventional alumina film. These results also allow a unified description of two templating effects, the more common particles-in-pores model, and the recently described particles-between-pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Here, the term porous anodic alumina is used, and abbreviated PAA, as this seems the most common convention in the literature. Other terminology has been used, including porous aluminum oxide (PAOX) (Schneider et al. 2008), anodic alumina nanoholes (AAN) (Iwasaki et al. 1999), anodic alumina template (AAT) (Sui et al. 2001b), anodic aluminum oxide (Hu et al. 2001), or simply nanoporous alumina (PA) (Lan et al. 2001).

  2. The ET3000 furnace is a thermal CVD system with horizontal flow through a quartz tube. The quartz tube has an inner diameter of approximately 7.5 cm, and a length of approximately 61 cm. The heated length is marginally shorter, due to the tube insulation.

References

  • Acosta RI (2010) Ostwald ripening of iron (Fe) catalyst nanoparticles on aluminum oxide surfaces (Al2O3) for the growth of carbon nanotubes. Dissertation, Wright State University

  • Altalhi T, Ginic-Markovic M, Han N, Clarke S, Losic D (2011) Synthesis of carbon nanotube (CNT) composite membranes. Membranes 1:37–47

    Article  Google Scholar 

  • Alvarez NT, Li F, Pint CL, Mayo JT, Fisher EZ, Tour JM, Colvin VL, Hauge RH (2011) Uniform large diameter carbon nanotubes in vertical arrays from premade near-monodisperse nanoparticles. Chem Mater 23:3466–3475

    Article  Google Scholar 

  • Alvine KJ, Shpyrko OG, Pershan PS, Shin K, Russell TP (2006) Capillary filling of anodized alumina nanopore arrays. Phys Rev Lett 97:1–4 175503

    Article  Google Scholar 

  • Amama PB, Pint CL, Kim SM, McJilton L, Eyink KG, Stach EA, Hauge RH, Maruyama B (2001) Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano 4:895–904

    Article  Google Scholar 

  • Bentley AK, Farhoud M, Ellis AB, Nickel AML, Lisensky GC, Crone WC (2005) Template Synthesis and Magnetic Manipulation of Nickel Nanowires. J Chem Educ 82:765–768

    Article  Google Scholar 

  • Butt HJ, Kappl M (2009) Normal capillary forces. Adv Colloid Interface Sci 146:48–60

    Article  Google Scholar 

  • Caupin F (2007) Comment on ‘‘capillary filling of anodized alumina”. Phys Rev Lett 98:259601

    Article  Google Scholar 

  • Celestini F (1997) Capillary condensation within nanopores of various geometries. Phys Lett A 228:84–90

    Article  Google Scholar 

  • Celestini F, Ten Bosch A (1995) Effect of shape on phase transition temperature of clusters. Phys Lett A 207:307–314

    Article  Google Scholar 

  • Che G, Lakshmi BB, Martin CR, Fisher E, Ruoff RS (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Chem Mater 10:260–267

    Article  Google Scholar 

  • Chen Y (2010) CVD synthesis of single-walled carbon nanotubes from selected catalysts. Masters Thesis, University of Cincinnati, Ohia, USA

  • Cui X, Wei W, Harrower C, Chen W (2009) Effect of catalyst particle interspacing on the growth of millimeter-scale carbon nanotube arrays by catalytic chemical vapor deposition. Carbon 47:3441–3451

    Article  Google Scholar 

  • Dimitrov DI, Milchev A, Binder K (2007) Capillary rise in nanopores: molecular dynamics. Phys Rev Lett 99:054501

    Article  Google Scholar 

  • Fedlheim DL, Foss CA (2001) Metal nanoparticles: Synthesis, Characterization, and Applications. CRC Press, Boca Raton

    Google Scholar 

  • Fisher R (1925) Statistical methods for research workers. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Gao H, Mu C, Wang F, Xu D, Wu K, Xie Y, Liu S, Wang E, Xu J, Yu D (2003) Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template. J Appl Phys 93:5602–5605

    Article  Google Scholar 

  • Hashishin T, Tono Y, TamakI J (2006) Guide growth of carbon nanotube arrays using anodic porous alumina with Ni catalyst. Jpn J Appl Phys 45:333–337

    Article  Google Scholar 

  • Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:231–325

    Article  Google Scholar 

  • Hu W, Gong D, Chen Z, Yuan L, Saito K, Grimes GA, Kichambare P (2001) Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate. Appl Phys Lett 79:3083–3085

    Article  Google Scholar 

  • Huber P, Knorr K, Kityk AV (2005) Capillary rise of liquids in nanopores. Materials Research Society Symposium Proceedings, Boston

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Iwasaki T, Motoi T, Den T (1999) Multiwalled carbon nanotubes growth in anodic alumina nanoholes. Appl Phys Lett 1999(75):2044–2046

    Article  Google Scholar 

  • Jeong SH, Hwang HY, Hwang SK, Lee KH (2004) Carbon nanotubes based on anodic aluminum oxide nano-template. Carbon 42:2073–2080

    Article  Google Scholar 

  • Jessensky O, Muller F, Gosele U (1998) Self-organized formation of hexagonal pore arrays in anodic alumina. App Phys Lett 72:1173–1175

    Article  Google Scholar 

  • Keller F, Hunter M, Robinson D (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100:411–419

    Article  Google Scholar 

  • Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on the growth mechanism and mass productions. J Nanosci Nanotechnol 10:3739–3758

    Article  Google Scholar 

  • Kyotani T, Tsai LF, Tomita A (1996) Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem Mater 8:2109–2113

    Article  Google Scholar 

  • Lan Y, Wang Y, Ren Z (2001) Physics and applications of aligned carbon nanotubes. Adv Phys 60:553–678

    Article  Google Scholar 

  • Lee OJ, Hwang SK, Jeong SH, Lee PS, Lee KH (2005) Synthesis of carbon nanotubes with identical dimensions using an anodic aluminum oxide template on a silicon wafer. Synth Met 148:263–266

    Article  Google Scholar 

  • Li J, Papadopoulos C, Xu JM, Moskovits M (1999) Highly-ordered carbon nanotube arrays for electronic applications. Appl Phys Lett 75:367–369

    Article  Google Scholar 

  • Meshot ER, Zhao Z, Lua W, Hart AJ (2014) Self-ordering of small-diameter metal nanoparticles by dewetting on hexagonal mesh templates. Nanoscale 6:10106

    Article  Google Scholar 

  • Nanda KK, Sahu SN, Behera SN (2002) Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66:013208

    Article  Google Scholar 

  • O’Sullivan J, Wood G (1970) The morphology and mechanism of formation of porous anodic films on aluminium. Proc R Soc Lond Ser A 317:511–543

    Article  Google Scholar 

  • Rabin O, Herz PR, Lin Y-M, Akinwande AI, Cronin SB, Dresselhaus MS (2013) Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass. Adv Funct Mater 13:631–638

    Article  Google Scholar 

  • Rabinovich YI, Adler JJ, Esayanur MS, Ata A, Singh RK, Moudgil BM (2002) Capillary forces between surfaces with nanoscale roughness. Adv Colloid Interface Sci 96:213–230

    Article  Google Scholar 

  • Rashidi A, Omidi M, Choolaei M, Nazarazadeh M, Yadegari A, Haghierosadat F, Oroojalian F, Azhdari M (2013) Electromechanical properties of vertically aligned carbon nanotube. Adv Mater Res 705:332–336

    Article  Google Scholar 

  • Rummeli M, Kramberger C, Schaffel F, Borowiak-Palen E, Gemming T, Rellinghaus B, Jost O, Loffler M, Ayala P, Pichler T, Kalenczuk AR (2007) Catalyst size dependencies for carbon nanotubes synthesis. Phys Status Solidi (b) 244:3911–3915

    Article  Google Scholar 

  • Saito R, Dresselhaus G, Dresselhaus M (1998) Electronic structure of single-wall nanotubes. Physical properties of carbon nanotubes. Imperial College Press, London, pp 59–72

    Chapter  Google Scholar 

  • Schneider JJ, Maksimova NI, Engstler J, Joshi R, Schierholz R, Feile R (2008) Catalyst free growth of a carbon nanotube-alumina composite structure. Inorg Chim Acta 361:1770–1778

    Article  Google Scholar 

  • Schneider C, Rasband W, Eliceiri K (2012) NIH image to imageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  • Shingubara S (2003) Fabrication of nanomaterials using porous alumina templates. J Nanopart Res 5:17–30

    Article  Google Scholar 

  • Sohn JI, Kim YS, Nam C, Cho B, Seong TY, Lee S (2005) Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbon nanotubes. Appl Phys Lett 87:123115

    Article  Google Scholar 

  • Sui Y, Gonzalez-Leon J, Bermudez A, Saniger J (2001a) Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template. Carbon 39:1709–1715

    Article  Google Scholar 

  • Sui Y, Cui B, Guardian R, Acosta D, Martinez L, Perez R (2001b) Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon 40:1011–1016

    Article  Google Scholar 

  • Takagi M (1954) Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films. J Phys Soc Jpn 9:359–363

    Article  Google Scholar 

  • Vogel EE, Vargas P, Altbir D, Escrig J (2010) Magnetic nanotubes. Handbook of nanophysics: nanotubes and nanowires. CRC Press, Boca Raton, pp 14–16

    Google Scholar 

  • Wang YM, Kuo HH, Verbrugge MW, Lian J, Wang L, Zhou W (2005) Template synthesis of ordered Pt nanorods in porous anodic alumina. Microsc Microanal 11:1408–1409

    Google Scholar 

  • Yu WJ, Cho YS, Choi GS, Kim D (2005) Patterned carbon nanotube field emitter using the regular array of an anodic alumium oxide tempate. Nanotechnology 16:S291–S295

    Article  Google Scholar 

  • Zhi L, Wu J, Li J, Kolb U, Müllen K (2005) Carbonization of disclike molecules in porous alumina membranes: toward carbon nanotubes with controlled graphene-layer orientation. Angew Chem Int Ed 44:2120–2123

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the National Science Foundation (NSF), through the following Grants: Engineering Research Center (ERC), number 0812348; Grant Opportunities for Academic Liaison with Industry (GOALI), number 1120382. Additional support was provided by the Office of Naval Research, through Defense University Research Instrumentation Program (DURIP). Melodie Fickenscher and the Cincinnati branch of the National Institute for Occupational Safety and Health (NIOSH) provided assistance in collecting the Hi-resolution Transmission Electron Microscopy images central to this work. Svitlana Fialkova, of the Center for Advanced Materials and Smart Structures (CAMMS) lab at North Carolina Agricultural and Technical State University (NCAT), provided assistance in collecting and measuring the Hi-resolution Scanning Electron Microscopy images of PAA and CNTs on PAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Haase.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2015_3159_MOESM1_ESM.docx

Electronic Supplementary Information (ESI) available: Supplementary information includescomplete histograms of the diameter, examples of the TEM images used to collect the diameterdata, and the recipe used to synthesize the carbon nanotubes. Supplementary material 1 (DOCX 12288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haase, M.R., Alvarez, N.T., Malik, R. et al. Unifying the templating effects of porous anodic alumina on metallic nanoparticles for carbon nanotube synthesis. J Nanopart Res 17, 359 (2015). https://doi.org/10.1007/s11051-015-3159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3159-2

Keywords

Navigation