Skip to main content
Log in

Controlled nanoclustering of magnetic nanoparticles using telechelic polysiloxane and disiloxane

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Diacrylate-terminated polydimethylsiloxane (PDMS) and disiloxane were synthesized and used for controlling degree of nanoclustering of magnetite nanoparticles (MNPs). PDMS was synthesized via a ring-opening polymerization of octamethylcyclotetrasiloxane (D4), followed by end functionalization with diacrylate groups. Diacrylate-terminated disiloxane was separately synthesized in a similar fashion without the use of D4 in the reaction. They were then reacted with amino-coated MNPs to obtain MNP-embedded siloxane nanoclusters. Transmission electron microscopy showed the formation of MNP-siloxane nanoclusters with the size of 70–200 nm. Degree of MNP nanoclustering can be adjusted by varying the MNP-to-siloxane ratio to obtain hydrodynamic size ranging from 200 to 2400 nm. Using the same ratio of MNPs to the siloxanes, PDMS resulted in the nanoclusters with smaller D h and more stable in toluene than those coated with disiloxane. These novel nanoclusters with controllable size might be ideal candidates for biomedical and other advanced applications after suitable surface modification.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andhariya N, Upadhyay R, Mehta R, Chudasama B (2013) Folic acid conjugated magnetic drug delivery system for controlled release of doxorubicin. J Nanopart Res 15:1–12

    Google Scholar 

  • Astete CE, Kumar CSSR, Sabliov CM (2007) Size control of poly(d,l-lactide-co-glycolide) and poly(d,l-lactide-co-glycolide)-magnetite nanoparticles synthesized by emulsion evaporation technique. Colloids Surf Physicochem Eng Asp 299:209–216

    Article  Google Scholar 

  • Banerjee N, Krupanidhi SB (2010) Facile hydrothermal synthesis and observation of bubbled growth mechanism in nano-ribbons aggregated microspherical Covellite blue-phosphor. Dalton Trans 39:9789–9793

    Article  Google Scholar 

  • Banerjee N, Krupanidhi SB (2013) Anomalous magnetic behavior of La0.6Sr0.4MnO3 nano-tubes constituted with 3–12 nm particles. Appl Phys A 111:605–612

    Article  Google Scholar 

  • Bayrakci M, Gezici O, Bas SZ, Ozmen M, Maltas E (2014) Novel humic acid-bonded magnetite nanoparticles for protein immobilization. Mater Sci Eng C 42:546–552

    Article  Google Scholar 

  • Chen Y, Qian Z, Zhang Z (2008) Novel preparation of magnetite/polystyrene composite particles via inverse emulsion polymerization. Colloids Surf Physicochem Eng Asp 312:209–213

    Article  Google Scholar 

  • Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172

    Article  Google Scholar 

  • Dhadge VL, Rosa SASL, Azevedo A, Aires-Barros R, Roque ACA (2014) Magnetic aqueous two phase fishing: a hybrid process technology for antibody purification. J Chromatogr A 1339:59–64

    Article  Google Scholar 

  • Durdureanu-Angheluta A, Ignat ME, Maier SS, Pricop L, Coroaba A, Fifere A, Pinteala M, Chiriac A (2014) Lipolytic biocatalyst based on recyclable magnetite-polysiloxane nanoparticles. Appl Surf Sci 292:898–905

    Article  Google Scholar 

  • Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2013) Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf B 102:534–539

    Article  Google Scholar 

  • Ge J, Hu Y, Biasini M, Beyermann WP, Yin Y (2007) Superparamagnetic magnetic colloidal nanocrystal clusters. Angew Chem Int Ed 46:4342–4345

    Article  Google Scholar 

  • Hayashi K, Sakamoto W, Yogo T (2013) One-pot synthesis of magnetic nanoparticles assembled on polysiloxane rod and their response to magnetic field. Colloid Polym Sci 291:2837–2842

    Article  Google Scholar 

  • Hu JD, Zevi Y, Kou XM, Xiao J, Wang XJ, Jin Y (2010) Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci Total Environ 408:3477–3489

    Article  Google Scholar 

  • Huang Y, Shi Q, Tsung CK, Gunawardena HP, Xie L, Yu Y, Liang H, Yang P, Stucky GD, Chen X (2011) An optimized magnetite microparticle-based phosphopeptide enrichment strategy for identifying multiple phosphorylation sites in an immunoprecipitated protein. Anal Biochem 408:19–31

    Article  Google Scholar 

  • Koubková J, Müller P, Hlídková H, Plichta Z, Proks V, Vojtěšek B, Horák D (2014) Magnetic poly(glycidyl methacrylate) microspheres for protein capture. N Biotechnol 31:482–491

    Article  Google Scholar 

  • Latham AH, Williams ME (2008) Controlling transport and chemical functionality of magnetic nanoparticles. Acc Chem Res 41:411–420

    Article  Google Scholar 

  • Li L, Mak KY, Leung CW, Chan KY, Chan WK, Zhong W, Pong PWT (2013) Effect of synthesis conditions on the properties of citric-acid coated iron oxide nanoparticles. Microelectron Eng 110:329–334

    Article  Google Scholar 

  • Mefford OT, Woodward RC, Goff JD, Vadala TP, St. Pierre TG, Dailey JP, Riffle JS (2007) Field-induced motion of ferrofluids through immiscible viscous media: testbed for restorative treatment of retinal detachment. J Magn Magn Mater 311:347–353

    Article  Google Scholar 

  • Park JW, Bae KH, Kim C, Park TG (2010) Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery. Biomacromolecules 12:457–465

    Article  Google Scholar 

  • Pita M, Abad JM, Vaz-Dominguez C, Briones C, Mateo-Martí E, Martín-Gago JA, del Puerto Morales M, Fernández VM (2008) Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J Colloid Interface Sci 321:484–492

    Article  Google Scholar 

  • Prai-in Y, Tankanya K, Rutnakornpituk B, Wichai U, Montembault V, Pascual S, Fontaine L, Rutnakornpituk M (2012) Azlactone functionalization of magnetic nanoparticles using ATRP and their bioconjugation. Polymer 53:113–120

    Article  Google Scholar 

  • Pray-in Y, Rutnakornpituk B, Wichai U, Vilaivan T, Rutnakornpituk M (2014) Hydrophilic azlactone-functionalized magnetite nanoparticle for conjugation with folic acid. J Nanopart Res 16:1–12

    Google Scholar 

  • Ragheb RT, Riffle JS (2008) Synthesis and characterization of poly(lactide-b-siloxane-b-lactide) copolymers as magnetite nanoparticle dispersants. Polymer 49:5397–5404

    Article  Google Scholar 

  • Rahman MM, Elaissari A (2012) Multi-stimuli responsive magnetic core–shell particles: synthesis, characterization and specific RNA recognition. J Colloid Sci Biotechnol 1:3–15

    Article  Google Scholar 

  • Sadat ME, Patel R, Sookoor J, Bud’ko SL, Ewing RC, Zhang J, Xu H, Wang Y, Pauletti GM, Mast DB, Shi D (2014) Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater Sci Eng C 42:52–63

    Article  Google Scholar 

  • Sahoo B, Devi KSP, Banerjee R, Maiti TK, Pramanik P, Dhara D (2013) Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfaces 5:3884–3893

    Article  Google Scholar 

  • Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906

    Article  Google Scholar 

  • Shen W, Shi M, Wang M, Chen H (2010) A simple synthesis of Fe3O4 nanoclusters and their electromagnetic nanocomposites with polyaniline. Mater Chem Phys 122:588–594

    Article  Google Scholar 

  • Singh S, Barick KC, Bahadur D (2011) Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. J Hazard Mater 192:1539–1547

    Article  Google Scholar 

  • Sondjaja R, Hatton TA, Tam MKC (2009) Clustering of magnetic nanoparticles using a double hydrophilic block copolymer, poly(ethylene oxide)-b-poly(acrylic acid). J Magn Magn Mater 321:2393–2397

    Article  Google Scholar 

  • Stempel GH, Cross RP, Mariella RP (1950) The preparation of acryloyl chloride. J Am Chem Soc 72:2299–2300

    Article  Google Scholar 

  • Thong-On B, Rutnakornpituk B, Wichai U, Rutnakornpituk M (2012) Magnetite nanoparticle coated with amphiphilic bilayer surfactant of polysiloxane and poly(poly(ethylene glycol)methacrylate). J Nanopart Res 14:1–12

    Google Scholar 

  • Wilson KS, Goff JD, Riffle JS, Harris LA, St. Pierre TG (2005) Polydimethylsiloxane-magnetite nanoparticle complexes and dispersions in polysiloxane carrier fluids. Polym Adv Technol 16:200–211

    Article  Google Scholar 

  • Xu B, Dou H, Tao K, Sun K, Ding J, Shi W, Guo X, Li J, Zhang D, Sun K (2011) “Two-in-one” fabrication of Fe3O4/MePEG–PLA composite nanocapsules as a potential ultrasonic/MRI dual contrast agent. Langmuir 27:12134–12142

    Article  Google Scholar 

  • Xu B, Lu R, Dou H, Tao K, Sun K, Qiu Y, Ding J, Zhang D, Li J, Shi W, Sun K (2012) Exploring the structure–property relationships of ultrasonic/MRI dual imaging magnetite/PLA microbubbles: magnetite@Cavity versus magnetite@Shell systems. Colloid Polym Sci 290:1617–1626

    Article  Google Scholar 

  • Yoon KY, Kotsmar C, Ingram DR, Huh C, Bryant SL, Milner TE, Johnston KP (2011) Stabilization of superparamagnetic iron oxide nanoclusters in concentrated brine with cross-linked polymer shells. Langmuir 27:10962–10969

    Article  Google Scholar 

  • Zhang L, Xue D, Gao C (2003) Anomalous magnetic properties of antiferromagnetic CoO nanoparticles. J Magn Magn Mater 267:111–114

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Thailand Research Fund (TRF, DBG5580002) for financial support. BT specially acknowledges the Royal Golden Jubilee PhD Program for the scholarship (PHD/0362/2552).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metha Rutnakornpituk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thong-On, B., Rutnakornpituk, B., Wichai, U. et al. Controlled nanoclustering of magnetic nanoparticles using telechelic polysiloxane and disiloxane. J Nanopart Res 17, 261 (2015). https://doi.org/10.1007/s11051-015-3071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3071-9

Keywords

Navigation