Skip to main content
Log in

Microwave synthesis of Ag@SiO2 core–shell using oleylamine

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ag nanoparticles were synthesized using microwave irradiation. Oleylamine was used as a stabilizer and capping agent, dimethylformamide as a reducing agent, and deionized water as a solvent. Synthetic parameters of Ag nanoparticles were optimized systematically. The Ag nanoparticles were used subsequently without any treatment in the preparation of Ag@SiO2 core–shell nanoparticles. UV–Vis spectroscopy shows a characteristic plasmon peak at 407 and 430 nm for Ag nanoparticles and Ag@SiO2 core–shells, respectively. Transmission electron microscope images show that Ag nanoparticles have the average size of 15 nm. It is also depicted that the core–shell structure was formed uniformly with the average size of 100 and 25 nm for Ag core and SiO2 shell, respectively. The application of Na-Cit in the preparation of core–shells yields single Ag core structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Angshuman P, Sunil S, Surekha D (2009) Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater Chem Phys 114(15):530–532. doi:10.1016/j.matchemphys.2008.11.056

    Google Scholar 

  • Ashrafi SJ, Rastegar MF, Ashrafi M, Yazdian F, Pourrahim R, Suresh AK (2013) Influence of external factors on the production and morphology of biogenic silver nanocrystallites. J Nanosci Nanotechnol 13:2295–2301. doi:10.1166/jnn.2013.6791

    Article  Google Scholar 

  • Bahadur NM, Furusawa T, Sato M, Kurayama F, Siddiquey IA, Suzuki N (2011) Fast and facile synthesis of silica coated silver nanoparticles by microwave irradiation. J Colloid Interface Sci 355:312–320. doi:10.1016/j.jcis.2010.12.016

    Article  Google Scholar 

  • Boxue C, Wenfeng Z, Xinghao Z, Xiao H, Xuemei Z, Haitao W, Min L, Yalin L, Shangfeng Y (2013) Surface plasmon enhancement of polymer solar cells by penetrating Au/SiO2 core/shell nanoparticles into all organic layers. Nano Energy 2:906–915. doi:10.1016/j.nanoen.2013.03.011

    Article  Google Scholar 

  • Chaorong L, Jie M, Shuwen L, Nianpeng L, Lina W, Benyong C, Wenjun D (2010) One-pot synthesis of Ag@SiO2@Ag sandwich nanostructures. Nanotechnology 21:245602–245608. doi:10.1088/0957-4484/21/24/245602

    Article  Google Scholar 

  • Duff DG, Curtis AC, Edwards PP, Jefferson DA, Johnson BG, Kirkland AI, Logan DE (1987) The morphology and microstructure of colloidal silver and gold. Angew Chem Int Ed Engl 26:676–678. doi:10.1002/anie.198706761

    Article  Google Scholar 

  • Feng L, Nunzi JM (2011) Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles. Appl Phys Lett 99:123302–123306. doi:10.1063/1.3640892

    Article  Google Scholar 

  • Galema SA (1997) Microwave chemistry. Chem Soc Rev 26:233–238. doi:10.1039/CS9972600233

    Article  Google Scholar 

  • Gao T, Jelle BP, Gustavsen A (2013) Core–shell-typed Ag@SiO2 nanoparticles as solar selective coating materials. J Nanopart Res 15:1370–1377. doi:10.1007/s11051-012-1370-y

    Article  Google Scholar 

  • Gedye RN, Smith FE, Westaway KC (1991) The rapid synthesis of organic compounds in microwave ovens. Can J Chem 69:706–7011. doi:10.1139/v88-003

    Article  Google Scholar 

  • Gong JL, Liang Y, Huang Y, Chen JW, Jiang JH, Shen GL, Yu RQ (2007) Ag/SiO2 core–shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosens Bioelectron 22:1501–1507. doi:10.1016/j.bios.2006.07.004

  • Green M, O’Brien P (2000) A simple one phase preparation of organically capped gold nanocrystals. Chem Commun 17:183–184. doi:10.1039/A907532A

    Article  Google Scholar 

  • Johans C, Clohessy J, Fantini S, Kontturi K, Cunnane VJ (2002) Electrosynthesis of polyphenylpyrrole coated silver particles at a liquid–liquid interface. Electrochem Commun 4:227–230. doi:10.1016/S1388-2481(02)00256-4

    Article  Google Scholar 

  • Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860. doi:10.1021/jp066952u

    Article  Google Scholar 

  • Kumar A, Mandale AB, Sastry M (2000) Sequential electrostatic assembly of amine-derivatized gold and carboxylic acid-derivatized silver colloidal particles on glass substrates. Langmuir 16:6921–6926. doi:10.1021/la000452p

    Article  Google Scholar 

  • Lee-Woon J, Dae-Woo J, Trilochan S, Dong-Seob J, Jin-Woo J, Seung-jae L, Jong-Hyeob B, Jin-Kyu Y, Jung-Hoon S, Polyakov AY, In-Hwan L (2013) Localized surface plasmon enhanced quantum efficiency of InGaN/GaN quantum wells by Ag/SiO2 nanoparticles. Opt Express 20:2116–2123. doi:10.1364/OE.20.002116

    Google Scholar 

  • Mandal S, Gole A, Lala N, Gonnade R, Ganvir V, Sastry M (2001) Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds. Langmuir 17:6262–6268. doi:10.1021/la010536d

    Article  Google Scholar 

  • Mourdikoudis S, Liz-Marzán LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25:1465–1476. doi:10.1021/cm4000476

    Article  Google Scholar 

  • Nishioka M, Miyakawa M, Kataoka H, Koda H, Sato K, Suzuki TM (2011) Facile and continuous synthesis of Ag@SiO2 core–shell nanoparticles by a flow reactor system assisted with homogeneous microwave heating. Chem Lett 40:1204–1206. doi:10.1246/cl.2011.1204

    Article  Google Scholar 

  • Porter LA, Ji D, Westcott SL, Graupe M, Czernuszewcz RS, Halas NJ, Lee TR (1998) Gold and silver nanoparticles functionalized by the adsorption of dialkyl disulfides. Langmuir 14:7378–7386. doi:10.1021/la980870i

    Article  Google Scholar 

  • Quaroni L, Chumanov G (1999) Preparation of polymer-coated functionalized silver nanoparticles. J Am Chem Soc 121:10642–10643. doi:10.1021/ja992088q

    Article  Google Scholar 

  • Sarathy KV, Kulkarni GU, Rao CNR (1997) A novel method of preparing thiol-derivatised nanoparticles of gold, platinum and silver forming superstructures. Chem Commun 12:537–538. doi:10.1039/A700738H

    Article  Google Scholar 

  • Sastry M, Mayya KS, Bandyopadhyay K (1997) pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf A 127:221–228. doi:10.1016/S0927-7757(97)00087-3

    Article  Google Scholar 

  • Scherrer P, Nachrichten G (1918) Estimation of size and internal structure of colloidal particles by means of Röntgen rays. Gottinger Nachrichten 2:98

    Google Scholar 

  • Schmid G (1994) Clusters and colloids, from theory to applications. VCH Verlagsgesellschaft, Weinheim

    Book  Google Scholar 

  • Shao-Peng Z, Shao-Chun T, Xiang-Kang M (2009) Monodisperse silver nanoparticles synthesized by a microwave-assisted method. Chin Phys Lett 26:078101–078107. doi:10.1088/0256-307X/26/7/078101

    Article  Google Scholar 

  • Stafford WS, Heeso N, Gary WB, Hui C, Schmuttenmaer CA (2013) Plasmonic enhancement of dye-sensitized solar cells using core–shell–shell nanostructures. J Phys Chem C 117:927–934. doi:10.1021/jp311881k

    Article  Google Scholar 

  • Tunc I, Bruns M, Gliemann H, Grunze M, Koelsch P (2010) Band gap determination and charge separation in Ag@TiO2 core shell nanoparticle films. Surf Interface Anal 42:835–841. doi:10.1002/sia.3558

    Article  Google Scholar 

  • Wuithschick M, Paul B, Bienert R, Sarfraz A, Vainio U, Sztucki M, Kraehnert R, Strasser P, Rademann K, Emmerling F, Polte J (2013) Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding. Chem Mater 25:4679–4689. doi:10.1021/cm401851g

    Article  Google Scholar 

  • Zhenhua B, Rui C, Peng S, Youju H, Handong S, Dong-Hwan K (2013) Fluorescent pH sensor based on Ag@SiO2 core–shell nanoparticle. ACS Appl Mater Interfaces 5:5856–5860. doi:10.1021/am401528w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Karimipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimipour, M., Shabani, E., Mollaei, M. et al. Microwave synthesis of Ag@SiO2 core–shell using oleylamine. J Nanopart Res 17, 2 (2015). https://doi.org/10.1007/s11051-014-2832-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2832-1

Keywords

Navigation