Skip to main content
Log in

Simple approach for gold nanoparticle synthesis using an Ar-bubbled plasma setup

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The synthesis procedure represents a key aspect in designing the physical and chemical properties of gold nanoparticles. The current study proposes a simple approach for gold nanoparticles synthesis using non-thermal plasma. The novelty of the setup consists in producing an in-liquid plasma discharge in argon bubbles that are externally generated in the solution exposed to treatment. Because plasma is the source of active species which are directly involved in gold reduction, no additional reducing agent was necessary. Collagen protein was used as capping agent. A plasma treatment of 10 min is sufficient for obtaining stable colloidal solutions with UV-Vis absorption maximum at 530 nm. Transmission electron microscopy images revealed preponderant spherical nanoparticles with dimensions in the range of 6–20 nm. The method of synthesis distinguishes by its good reproducibility, facility, efficiency, and ability to generate stable colloidal nanoparticles after several minutes of plasma exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamczak M, Scislowska-Czarnecka A, Genet MJ, Dupont-Gillain CC, Pamula E (2011) Surface characterization, collagen absorption and cell behaviour on poly (l-Lactide-co-Glycolide). Acta Bioeng Biomech 3:63–75. doi:10.5277/abb130108

    Google Scholar 

  • Anderson M, Torres-Chavolla E, Castro B, Alocilja E (2011) One step alkaline synthesis of biocompatible gold nanoparticles using dextrin as capping agent. J Nanopart Res 13:2843–2851. doi:10.1007/s11051-010-0172-3

    Article  Google Scholar 

  • Anghel SD (2002) Generation of a low-power capacitively coupled plasma at atmospheric pressure. IEEE Trans Plasma Sci 30:660–664. doi:10.1109/TPS.2002.1024265

    Article  Google Scholar 

  • Ashokkumar M, Narayanan NT, Reddy ALM, Gupta BK, Chandrasekaran B, Talapatra S, Ajayan PM, Thanikaivelan P (2012) Transforming collagen wastes into doped nanocarbons for sustainable energy applications. Green Chem 14:1689–1695. doi:10.1039/C2GC35262A

    Article  Google Scholar 

  • Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35:369–430. doi:10.1017/S0033583502003815

    Article  Google Scholar 

  • Boca SC, Potara M, Gabudean A-M, Juhem A, Baldeck PL, Astilean S (2011) Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett 311:131–140. doi:10.1016/j.canlet.2011.06.022

    Article  Google Scholar 

  • Bratescu MA, Cho S-P, Takai O, Saito N (2011) Size-controlled gold nanoparticles synthesized in solution plasma. J Phys Chem C 115:24569–24576. doi:10.1021/jp207447c

    Article  Google Scholar 

  • Bruggeman P, Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42(28):053001. doi:10.1088/0022-3727/42/5/053001

    Article  Google Scholar 

  • Camerotto E, De Schepper P, Nikiforov AY, Brems S, Shamiryan D, Boullart W, Leys C, De Gendt S (2012) Study of ultrasound-assisted radio-frequency plasma discharges in n-dodecane. J Phys D Appl Phys 45(9):435201. doi:10.1088/0963-0252/20/4/045001

    Article  Google Scholar 

  • Chen Q, Kaneko T, Hatakeyama R (2012a) Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma. Chem Phys Lett 521:113–117. doi:10.1016/j.carbpol.2012.08.018

    Article  Google Scholar 

  • Chen Q, Kaneko T, Hatakeyama R (2012b) Reductants in Gold Nanoparticle Synthesis Using Gas-Liquid Interfacial Discharge Plasmas. Appl Phys Express 5(3):086201. doi:10.1143/APEX.5.086201

    Article  Google Scholar 

  • Chiang WH, Richmonds C, Sankaran RM (2010) Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Sci Technol 19(8):034011. doi:10.1088/0022-3727/43/32/323001

    Article  Google Scholar 

  • Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550. doi:10.1021/nl070363y

    Article  Google Scholar 

  • Daniel MC, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  Google Scholar 

  • Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779. doi:10.1039/c1cs15237h

    Article  Google Scholar 

  • Furusho H, Kitano K, Hamaguchi S, Nagasaki Y (2009) Preparation of stable water-dispersible pegylated gold nanoparticles assisted by nonequilibrium atmospheric-pressure plasma jets. Chem Mater 21:3526–3535. doi:10.1021/cm803290b

    Article  Google Scholar 

  • Graham WG, Stalder KR (2011) Plasmas in liquids and some of their applications in nanoscience. J Phys D Appl Phys 44(8):174037. doi:10.1088/0022-3727/44/17/174037

    Article  Google Scholar 

  • Gurdak E, Booth J, Roberts CJ, Rouxhet PG, Dupont-Gillain CC (2006) Influence of collagen denaturation on the nanoscale organization for adsorbed layers. J Colloid Interface Sci 302:475–484. doi:10.1016/j.jcis.2006.06.064

    Article  Google Scholar 

  • Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79:4215–4221. doi:10.1021/ac0702084

    Article  Google Scholar 

  • Hofmann S, van Gessel AFH, Verreycken T, Bruggeman P (2011) Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets. Plasma Sources Sci Technol 20(12):065010. doi:10.1088/0963-0252/20/6/065010

    Article  Google Scholar 

  • Jin Y, Li Z, Hu L, Shi X, Guan W, Du Y (2013) Synthesis of chitosan-stabilized gold nanoparticles by atmospheric plasma. Carbohydr Polym 91:152–156. doi:10.1016/j.carbpol.2012.08.018

    Article  Google Scholar 

  • Khullar P, Singh V, Mahal A, Dave PN, Thakur S, Kaur G, Singh J, Singh Kamboj S, Singh Bakshi M (2012) Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis, and cytotoxicity toward cancer cell lines. J Phys Chem C 116:8834–8843. doi:10.1021/jp300585d

    Article  Google Scholar 

  • Kumari K, Singh P, Mehrotra KG (2012) A facile one pot synthesis of collagen protected gold nanoparticles using NA–malanodialdehyde. Mater Lett 79:199–201. doi:10.1016/j.matlet.2012.04.001

    Article  Google Scholar 

  • Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22. doi:10.1016/S0378-5173(01)00691-3

    Article  Google Scholar 

  • Li G, Li D, Zhang L, Zhai J, Wang E (2009) One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake chemistry. Chem Eur J 15:9868–9873. doi:10.1002/chem.200900914

    Article  Google Scholar 

  • Liu JJ, Kong MG (2011) Sub-60 & #xB0;C atmospheric helium–water plasma jets: modes, electron heating and downstream reaction chemistry. J Phys D Appl Phys 44(13):345203. doi:10.1088/0022-3727/44/34/345203

    Article  Google Scholar 

  • Lopez Garcia J, Asadinezhad A, Pacherník J, Lehocký M, Junkar I, Humpolíček P, Sáha P, Valášek P (2010) Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules 15:2845–2856. doi:10.3390/molecules15042845

    Article  Google Scholar 

  • Luque H, Crosley DR (1999) Stanford Research Institute (Sri) International Report M, pp 99–009

  • Mariotti D, Sankaran RM (2010) Microplasmas for nanomaterial synthesis. J Phys D Appl Phys 43(21):323001. doi:10.1088/0022-3727/43/32/323001

    Article  Google Scholar 

  • Mariotti D, Sankaran RM (2011) Perspectives on Atmospheric-Pressure Plasmas for Nanofabrication. J Phys D Appl Phys 44(8):174023. doi:10.1088/0022-3727/44/17/174023

    Article  Google Scholar 

  • Mariotti D, Patel J, Svrcek V, Maguire P (2012) Plasma-liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Process Polym 9:1074–1085. doi:10.1002/ppap.201200007

    Article  Google Scholar 

  • Montaser A, Golightly DW (1992) Inductively coupled plasmas in analytical atomic spectrometry. VCH Publishers, New York

    Google Scholar 

  • Navrátil Z, Trunec D, Šmíd R, Lazar LA (2006) Software for optical emission spectroscopy-problem formulation and application to plasma diagnostics. CzJPh. 56:B944–B951. doi:10.1007/s10582-006-0308-y

    Google Scholar 

  • Papi M, Palmieri V, Maulucci G, Arcovito G, Greco E, Quintiliani G, Fraziano M, Spirito M (2011) Controlled self assembly of collagen nanoparticle. J Nanopart Res 13:6141–6147. doi:10.1007/s11051-011-0327-x

    Article  Google Scholar 

  • Patel J, Nemcova L, Maguire P, Graham WG, Mariotti D (2013) Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology 24:0957–4484. doi:10.1088/0957-4484/24/24/245604

    Article  Google Scholar 

  • Richmonds C, Sankaran RM (2008) Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl Phys Lett 93(3):131501. doi:10.1063/1.2988283

    Article  Google Scholar 

  • Samouillan V, Merbahi N, Yousfi M, Gardou J, Delaunay F, Dandurand J, Lacabanne C (2012) Effect of low-temperature plasma jet on thermal stability and physical structure of type i collagen. IEEE Trans Plasma Sci 40:1688–1695. doi:10.1109/TPS.2012.2190303

    Article  Google Scholar 

  • Seol SK, Kim D, Jung S, Hwu Y (2011) Microwave synthesis of gold nanoparticles: effect of applied microwave power and solution pH. Mater Chem Phys 131:331–335. doi:10.1016/j.matchemphys.2011.09.050

    Article  Google Scholar 

  • Sun Y, Sun L, Zhang B, Xu F, Liu Z, Guo C, Zhang Y, Li Z (2009) Type I collagen-mediated synthesis of noble metallic nanoparticles networks and the applications in surface-enhanced raman scattering and electrochemistry. Talanta 79:562-560. doi:10.1016/j.talanta.2009.04.027

    Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. doi:10.1039/DF9511100055

    Article  Google Scholar 

  • Wei G, Wang L, Sun L, Song Y, Sun Y, Guo C, Yang T, Li Z (2007) Type I collagen-mediated synthesis and assembly of Uv-photo reduced gold nanoparticles and their application in surface-enhanced raman scattering. J Phys Chem C 111:1976–1982. doi:10.1021/jp065868b

    Article  Google Scholar 

  • Yanguas-Gil A, Cotrino J, González-Elipe AR (2006) Measuring the electron temperature by optical emission spectroscopy in two temperature plasmas at atmospheric pressure: A critical approach. J Appl Phys 99(6):033104

    Article  Google Scholar 

  • Zaharie-Butucel D, Anghel SD (2014) Optical characterization and application of an atmospheric pressure Ar plasma in contact with liquids for organic dyes degradation. Rom J Phys 59 in press, http://www.nipne.ro/rjp/2014_59_7-8.html

Download references

Acknowledgments

The authors would like to thank Dr. Teodora Radu, Institute of Interdisciplinary Research on Bio-Nano-Sciences, Cluj-Napoca for her help in performing the XPS measurements. Nicolae Leopold acknowledges support from UEFISCDI PNII-RU-TE_323/2010 grant. I. E. Vlad highly acknowledges financial support from the Babeş-Bolyai University Performance Scholarship with the contract number 34829-14/11.12.2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Anghel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlad, I.E., Marisca, O.T., Vulpoi, A. et al. Simple approach for gold nanoparticle synthesis using an Ar-bubbled plasma setup. J Nanopart Res 16, 2633 (2014). https://doi.org/10.1007/s11051-014-2633-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2633-6

Keywords

Navigation