Skip to main content

Radio Frequency Plasma-Based Synthesis of Metallic Nanoparticles for Biomedical Application

  • Chapter
  • First Online:
Emerging Technologies for Nanoparticle Manufacturing

Abstract

This chapter involves the plasma synthesis of nanoparticulate powders. Using induction-coupled plasma (ICP) is the new way of producing high purity nanopowders on an industrial scale. All this is made possible by TEKNA, the leading producer of nanomaterial synthesizing machines. The concept of plasma synthesis is used quite comprehensively; it encompasses all the processes by which charged particles are kept. Therefore, the topic of this project ranges from high temperature processes and microwave processes to the laser and flame synthesis of nanopowders. For each of the processes discussed in this chapter, the product characteristics are explained. Not only being a means of producing high purity powders, IPS is known for having a clean heat source that lacks induced contaminants assuring high-grade products. This complex technology is based on utilizing high voltage being passed through a coil with a conductor placed in between the coil to produce a large amount of heat at the conductor owing to the effect of electromagnetic induction. With flowing gas being used as the conductor, it will reach high temperature extremes because of ionization of the gas into a plasma. The most common gases used in this system include argon, hydrogen, and oxygen as carriers. The IPS machine uses micron-sized powders as the feed, which is then carried through the system by a carrier gas, commonly argon. These are then ionized together or vaporized to a plasma state, the fourth state of matter at extreme temperatures producing ionized metal, which are then subjected to a quenching gas, ensuring homogenous nucleation. The size of the nanoparticles, ranging from 20 to 100 nm based on several parameters, is to be closely calculated and followed to ensure the desired nanoparticle size outcome. These include: temperature; feed dispersion; gas composition; quenching gas; feed rate; carrier gas; carrier gas temperature; torch temperature; raw material. The particle morphology and distribution of nanopowders were significantly influenced by the powder feed rate, the induction of plasma power, and the volume of the sheath gas. The average particle size monotonously increased with the increase in powder feed rate. The nanopowder distribution became more and more concentrated as the induction plasma power increased. The average size of nanopowder decreased obviously with the increase in H2 proportion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akyildiz H, Ozturk T. Hydrogen sorption in crystalline and amorphous Mg–Cu thin films. J Alloys Compd. 2010;492(12):745–50.

    Article  CAS  Google Scholar 

  • Aminorroaya S, Ranjbar A, Cho YH, Liu HK, Dahle AK. Hydrogen storage properties of mg10 wt.% Ni alloy co-catalysed with niobium and multiwalled carbon nanotubes. Int J Hydrog Energy. 2011;36(1):571–9.

    Article  CAS  Google Scholar 

  • Anastasopol A, er TVP, Middelkoop J, La font U, Perez RJC, Ott AS, Mulder FM, Eijt SWH. Reduced enthalpy of metal hydride formation for Mg–Ti nanocomposites produced by spark discharge generation. J Am Chem Soc. 2013;135(21):7891–900.

    Article  CAS  Google Scholar 

  • Atias-Adrian IC, Deorsola FA, Ortigoza-Villalba GA, De Benedetti B, Baricco M. Development of nanostructured Mg2Ni alloys for hydrogen storage applications. Int J Hydrog Energy. 2011;36(13):7897–901.

    Article  CAS  Google Scholar 

  • Baldwin RK, Pettigrew KA, Garno JC, Power PP, Liu G, Kauzlarich SM. Room temperature solution synthesis of alkyl capped tetrahedral shaped silicon nanocrystals. J Am Chem Soc. 2002;124(7):1150–1.

    Article  CAS  Google Scholar 

  • Burak Aktekin. Induction plasma synthesis of Mg-Ni nanoparticles. PhD thesis, Middle East Technical University; 2013.

    Google Scholar 

  • Bystrzejewski M, Huczko A, Lange H. Arc plasma route to carbon encapsulated magnetic nanoparticles for biomedical applications. Sensors Actuators B Chem. 2005;109(1):81–5.

    Article  CAS  Google Scholar 

  • Cheng KY, Anthony R, Kortshagen UR, Holmes RJ. Hybrid silicon nanocrystal organic light emitting devices for infrared electroluminescence. Nano Lett. 2010;10(4):1154–7.

    Article  CAS  Google Scholar 

  • Dal Negro L, Pavesi L, Pucker G, Franzo G, Priolo F. Optical gain in silicon nanocrystals. Opt Mater. 2001;17(12):41–4.

    Article  CAS  Google Scholar 

  • de Jongh PE, Wagemans RWP, Eggenhuisen TM, Dauvillier BS, Radstake PB, Meeldijk JD, Geus JW, de Jong KP. The preparation of carbon supported magnesium nanoparticles using melt in infiltration. Chem Mater. 2007;19(24):6052–7.

    Article  Google Scholar 

  • Ding Y, Dong Y, Bapat A, Nowak JD, Barry Carter C, Kortshagen UR, Campbell SA. Single nanoparticle semiconductor devices. IEEE Trans on Electron Devices. 2006;53(10):2525–31.

    Article  CAS  Google Scholar 

  • Gresback R, Nozaki T, Okazaki K. Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma. Nanotechnology. 2011;22(30):305605.

    Article  Google Scholar 

  • Gupta A, Swihart MT, Wiggers H. Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: exploring the photoluminescence behavior across the visible spectrum. Adv Funct Mater. 2009;19(5):696–703.

    Article  CAS  Google Scholar 

  • Hirasawa M, Orii T, Seto T. Size-dependent crystallization of Si nanoparticles. Appl Phys Lett. 2006;88(9):093119.

    Article  Google Scholar 

  • Jeon K-J, Moon HR, Ruminski AM, Jiang B, Kisielowski C, Bardhan R, Urban JJ. Air stable magnesium nanocomposites provide rapid and high capacity hydrogen storage without using heavy metal catalysts. Nat Mater. 2011;10(4):286.

    Article  CAS  Google Scholar 

  • Jiayin G, Xiaobao F, Dolbec R, Siwen X, Jurewicz J, Boulos M. Development of nano powder synthesis using induction plasma. Plasma Sci Technol. 2010;12(2):188.

    Article  Google Scholar 

  • Jurbergs D, Rogojina E, Mangolini L, Kortshagen U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl Phys Lett. 2006;88(23):233116.

    Article  Google Scholar 

  • Lee JG, Li P, Choi CJ, Dong XL. Synthesis of Mn–Al alloy nanoparticles by plasma arc discharge. Thin Solid Films. 2010;519(1):81–5.

    Article  CAS  Google Scholar 

  • Lee JK, Yoon WY, Kim BK. Electrochemical behavior of Si nanoparticle anode coated with diamond like carbon for lithium ion battery. J Electrochem Soc. 2012;159(11):A1844–8.

    Article  CAS  Google Scholar 

  • Lei JP, Huang H, Dong XL, Sun JP, Lu B, Lei MK, Wang Q, Dong C, Cao GZ. Formation and hydrogen storage properties of in situ prepared Mg–Cu alloy nanoparticles by arc discharge. Int J Hydrog Energy. 2009;34(19):8127–34.

    Article  CAS  Google Scholar 

  • Li JG, Ikeda M, Ye R, Moriyoshi Y, Ishigaki T. Control of particle size and phase formation of TiO2 nanoparticles synthesized in RF induction plasma. J Phys D Appl Phys. 2007;40(8):2348.

    Article  CAS  Google Scholar 

  • Liang G, Huot J, Boily S, Van Neste A, Schulz R. Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite. J Alloys Compd. 1999;291(12):295–9.

    Article  CAS  Google Scholar 

  • Mandal TK, Gregory DH. Hydrogen: a future energy vector for sustainable development. Proc Inst Mech Eng C J Mech Eng Sci. 2010;224(3):539–58.

    Article  Google Scholar 

  • Mangolini L. Synthesis, properties, and applications of silicon nanocrystals. J Vac Sci Technol B Microelectron Nanometer Struct. 2013;31(2):020801.

    Google Scholar 

  • Mangolini L, Thimsen E, Kortshagen U. High yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 2005;5(4):655–9.

    Article  CAS  Google Scholar 

  • Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline mg-based materials. J Alloys Compd. 2001;315(12):237–42.

    Article  CAS  Google Scholar 

  • Ostraat ML, De Blauwe JW, Green ML, Bell LD, Brongersma ML, Casperson J, Flagan RC, Atwater HA. Synthesis and characterization of aerosol silicon nanocrystal non-volatile fatigated memory devices. Appl Phys Lett. 2001;79(3):433–5.

    Article  CAS  Google Scholar 

  • Petermann N, Stein N, Schierning G, Theissmann R, Stoib B, Brandt MS, Hecht C, Schulz C, Wiggers H. Plasma synthesis of nanostructures for improved thermoelectric properties. J Phys D Appl Phys. 2011;44(17):174034.

    Article  Google Scholar 

  • Pfeiffer TV, Feng J, Schmidt Ott A. New developments in spark production of nanoparticles. Adv Powder Technol. 2014;25(1):56–70.

    Article  CAS  Google Scholar 

  • Reilly JJ Jr, Wiswall RH Jr. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem. 1968;7(11):2254–6.

    Article  CAS  Google Scholar 

  • Reinmann R, Akram M. Temporal investigation of a fast spark discharge in chemically inert gases. J Phys D Appl Phys. 1997;30(7):1125.

    Article  CAS  Google Scholar 

  • Schwyn S, Garwin E, SchmidtOtt A. Aerosol generation by spark discharge. J Aerosol Sci. 1988;19(5):639–42.

    Article  CAS  Google Scholar 

  • Si PZ, Zhang ZD, Geng DY, You CY, Zhao XG, Zhang WS. Synthesis and characteristics of carbon coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor. Carbon. 2003;41(2):247–51.

    Article  CAS  Google Scholar 

  • Vons VA, Leegwater H, Legerstee WJ, Eijt SWH, Schmidt Ott A. Hydrogen storage properties of spark generated palladium nanoparticles. Int J Hydrog Energy. 2010;35(11):5479–89.

    Article  CAS  Google Scholar 

  • Vons VA, Anastasopol A, Legerstee WJ, Mulder FM, Eijt SWH, Schmidt Ott A. Low temperature hydrogen desorption and the structural properties of spark discharge generated mg nanoparticles. Acta Mater. 2011;59(8):3070–80.

    Article  CAS  Google Scholar 

  • Vyas D, Jain P, Agarwal G, Jain A, Jain IP. Hydrogen storage properties of Mg2Ni affected by Cr catalyst. Int J Hydrog Energy. 2012;37(21):16013–7.

    Article  CAS  Google Scholar 

  • Yan Y, Au YS, Rentsch D, Remhof A, de Jongh PE, Zuttel A. Reversible hydrogen storage in Mg(Bh4)2/carbon nanocomposites. J Mater Chem A. 2013;1(37):11177–83.

    Article  CAS  Google Scholar 

  • Zaluska A, Zaluski L, Strom Olsen JO. Synergy of hydrogen sorption in ball milled hydrides of Mg and Mg2Ni. J Alloys Compd. 1999;289(12):197–206.

    Article  CAS  Google Scholar 

  • Zhang X, Yang R, Yang J, Zhao W, Zheng J, Tian W h, Li X g. Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction. Int J Hydrog Energy. 2011;36(8):4967–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

I would like to heartily thank Dr. Y. Srinivas Rao, chief scientist of the Nanotechnology Innovation Centre, who helped me with the antimicrobial study of plasma-synthesized nano silver. I would also like to thank my machine operator, Vivek Sharma, for being there with me through various trials and experiments. This was all possible because of the blessing of my Mom and Dad, who constantly supported me to be a nanotechnologist. In addition, I would also want to acknowledge my friend, Miss Risha Jain, who constantly kept me motivated during my experiments and trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vignesh Nagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagarajan, V., Sudan, S., Sharma, K. (2021). Radio Frequency Plasma-Based Synthesis of Metallic Nanoparticles for Biomedical Application. In: Patel, J.K., Pathak, Y.V. (eds) Emerging Technologies for Nanoparticle Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-50703-9_19

Download citation

Publish with us

Policies and ethics