Skip to main content
Log in

Synthesis of iron oxide/manganese oxide composite particles and their magnetic properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We have investigated the synthesis and structural as well as magnetic properties of composite nanoparticles, including core–shell particles, consisting of iron and manganese oxides. The synthesis is based on thermal decomposition of suitable metal oleates in a high boiling solvent. Seed particles are used to avoid homogeneous nucleation and to initiate the formation of heterogeneous systems. The as-synthesized particles were characterized by energy filtered transmission electron microscopy (EFTEM) and SQUID magnetometry. The synthesized nanoparticles had diameters between 10 and 20 nm and consisted of manganese oxide and iron oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The lattice constants for FeO and MnO are 4,275–4,302 Å (depending on the iron/oxygen ratio; Cornell & Schwertmann 2003; McCammon et al. 1984) and 4,446 Å (Sasaki et al. 1980), respectively.

References

  • Bayer V, Franchini C, Podloucky R (2007) Ab initio study of the structural, electronic, and magnetic properties of MnO(100) and MnO(110). Phys Rev B 75:035404

  • Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30(4):120S–129S

    Article  Google Scholar 

  • Belin T, Millot N, Bovet N, Gailhanou M (2007) In situ and time resolved study of the γ/α- Fe2O3 transition in nanometric particles. J Solid State Chem 180:2377–2385

    Article  Google Scholar 

  • Berkowitz AE, Schuele WJ, Flanders PF (1968) Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 partic1es. J Appl Phys 39:1261

    Article  Google Scholar 

  • Bomatí-Miguel O, Mazeina L, Navrotsky A, Veintemillas-Verdaguer S (2008) Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem Mater 20:591–598

    Article  Google Scholar 

  • Bronstein LM, Huang X, Retrum J, Schmucker A, Pink M, Stein B, Dragnea B (2007) Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem Mater 19:3624–3632

    Article  Google Scholar 

  • Chang YQ, Yu DP, Wang Z, Long Y, Zhang HZ, Ye RC (2005) Fabrication and abnormal magnetic properties of MnO nanoparticles via vapour phase growth. J Cryst Growth 281:678–682

    Article  Google Scholar 

  • Chen C-J, Chiang R-K, Lai H-Y, Lin C-R (2010) Characterization of monodisperse wüstite nanoparticles following partial oxidation. J Phys Chem C 114:4258–4263

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The Iron Oxides: Structure, properties, reactions, occurence and uses. 2nd edn. VCH, Weinheim

  • Huang W-C, Lyu L-M, Yang Y-C, Huang MH (2012) Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J Am Chem Soc 134:1261–1267

    Article  Google Scholar 

  • Janzen C, Knipping J, Rellinghaus B, Roth P (2003) Formation of silica-embedded iron-oxide nanoparticles in low-pressure flames. J Nanoparicle Res 5:589

    Article  Google Scholar 

  • Kovalenko MV, Bodnarchuk MI, Lechner RT, Hesser G, Schäffler F, Heiss W (2007) Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc 129:6352–6353

    Article  Google Scholar 

  • Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003) The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B 43:151–162

    Article  Google Scholar 

  • Li S, Jiang ZH, Jiang Q (2008) Thermodynamic phase stability of three nano-oxides. Mater Res Bull 43:3149–3154

    Article  Google Scholar 

  • Liang S, Teng F, Bulgan G, Zong R, Zhu Y (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112:5307–5315

    Article  Google Scholar 

  • McCammon CA, Liu L (1984) The effects of pressure and temperature an nonstochiometric Wüstite, FexO: The Iron-rich Phase Boundary. Phys Chem Miner 10:106–113

  • Meiklejohn WH, Bean CP (1957) New Magnetic Anisotropy. Phys Rev 105:904–913

    Article  Google Scholar 

  • Navrotsky A, Ma C, Lilova K, Birkner N (2010) Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science 330:199–201

  • Noguès J, Schuller Ivan K (1999) Exchange Bias. J Magn Magn Mater 192:203–232

    Article  Google Scholar 

  • Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Google Scholar 

  • Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496

    Article  Google Scholar 

  • Sanshiro Sako, Yoshifumi Umemura, Kazunari Ohshima, Masashiro Saki, Shunji Bandow (1996) Magnetic property of antiferromagnetic MnO ultrafine particles. J Phys Soc Jpn 65:280–284

    Article  Google Scholar 

  • Sasaki S, Fujino K, Takéuchi Y, Sadanaga R (1980) On the estimation of atomic charges by the X-ray method for some oxides and silicates. Acta Crystallogr A A36:904–915

    Article  Google Scholar 

  • Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachrichten 2:98–100

    Google Scholar 

  • Schladt TD, Graf T, Treml W (2009) Synthesis and characterization of monodisperse manganese oxide nanoparticles—evaluation of the nucleation and growth mechanism. Chem Mater 21:3183–3190

    Article  Google Scholar 

  • Ye X, Lin D, Jiao Z, Zhang L (1998) The thermal stability of nanocrystalline maghemite Fe2O3. J Phys D Appl Phys 31:2739–2744

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aladin Ullrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullrich, A., Hohenberger, S., Özden, A. et al. Synthesis of iron oxide/manganese oxide composite particles and their magnetic properties. J Nanopart Res 16, 2580 (2014). https://doi.org/10.1007/s11051-014-2580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2580-2

Keywords

Navigation